

$53332 / A$

87267

Mathematicall

M A G I CK. O R, THE VVONDERS That may be performed by Mechanicall Geometry.

In two Books.

CONCERNING

Mechanicall $\left\{\begin{array}{l}\text { POVVERS. } \\ \text { MOTIONS. }\end{array}\right.$
BEINGONEOF
The moft eafie, pleafant, ufefull, (and yet moft neglected) part of MATHEMATICKS.
Not before treated of in this language.
By I.W. M. A.

LONDON,

Printed by M.F. for Sa: Gellibrand at the brafen Serpent in Pauls Church-yard. 1648.

The Epiftle.

a fudge in all kind of ingenuous arts and literature, mult needs acknowledge your preffires and low condition, to be none of the leaff mijchiefs (amonget thofe many other) under whicbths Common-wealth of learning does now fuffer.

It weuld in many relpects much conduce to the generall advancement of religion and learning, if the reformed Churches in whole cainfe and defence your family hath fo deeply fuffered, were but effectually mindfull of their engagements to it. And particularly, if thefe prefent unhappy differences of this Nation did not occafion too much forgetfulneffe of their former zeal and profeffions for the vindicating of your family, and the reftoring of your Highneffe; the baftning and accomplifbment of which, together with the increafeof all heavenly bleffings apon your Highnefe, Soall be the bearty dayly prayer of

Your Highneffe

molt humble and moft devoted
fervant and Chaplain,
John Wilikins.
 TO THE READER.

I is related of Heraclitus that when his Scholars had found him in a tradefmans fhop, whether they were afhamed to enter. He told them, 2uodneque tali loco dii defunt immortales, that the gods were as well converfant in fuch places as in others; Intimating that a divine power and wifdome might be difcerned even in thofe common arts, which are fo much defpiled; And though the manuall exercife and praatife of them be efteemed ignoble, yet the ftudy of their generall caufes and principles, cannot bee prejudiciall to any other (though the moft facred) profeffion.

It hath been my ufuall cuftome in the courfe of my other ftudies, to propofe divers Mathematicall or Philofophicall inquiries, for the recreation of my leifure howers, and as I could gather fatisfaction to compofe them into fome form and method.

Some of thefe have been formerly publi-

$$
\text { A } 4 \text { fhed, }
$$

To the Reader.

Thed, and I have now ventured forth this difcourfe; wherein befides the great delight and pleafure. (which every rationall Reader mult needs finde in fuch notions as carry with them their own evidence and demonftration) there is alfo much real benefit to be learned; particularly for fuch Gentemen as employ cheir eftates in thofe chargeable adventures of Drayning, Mines, Cole- pirs,\&c. who mayfrom hence learn the chief grounds \& nature of Engines, \& thereby more eafily avoid the delufions of any cheating Impoftor: And alio for fuch common artificers, as are well skilled in the practife of thefe arts, who may be much advantaged by the right underttanding of their grounds and Theary.

Ramus hath obferved, that the reafon

Scho.Mathem.l.z.

Agrippa, DeVanit. Scíent. ca. 42. why Germany hath been fo eminent for Mechanicall inventions, is becaufe there have been publike Lectures of this kind inftituted amonglt them, and thofe not only in the learned languages, but alfo in the vulgar tongue, for rhe capacity of every unlettered ingenious Artificer.

This whole Difconrle I call Mathematicall Magick, becaufe the art of fuch Mechanicall inventions as are here chisfly infifted upon, hath been formerly fo ftyled; and in allufion to vulgar opinion, which doth commonly attribute all fuch ftrange operations unto

To the Reader.

unto the power of Magick ; For which reafon the Ancients did name chis art ©avesтотоוnतxin, or Mirandorum Effectrix.

The firt book is called Archimedes, becaufe he was the chiefeft in difcovering of Mechanicall powers.

The fecond is fyled by the name of $D_{a^{-}}$ dalus, who is related to be one of the firlt \& moft famous amongit the Ancients for his skil in making Automata, or felf-moving En_ gines: boch thefe being two of the firft Authors that did reduce Mathematicall principles unto Mechanicall experiments.

Other difcourfes of this kind, are for the moft part large and voluminous, of great price and hardly gotten ; and befides, there are not any of them(that I know of) in our vulgar tongue, for which thefe Mechanicall arts of all otherare moft proper. Thefe inconveniences are here in fome meafure remedied, together with the addition (if I miftake not) of divers things very confiderable, and not infifted upon by others.

The

Ch.6.

The Contents.

Ch.6. Concerning the Wheel.
Ch.7. Concerning the Pulley.
Ch.8. of the Wedge.
Ch.9. of the Screw.
Ch.10. An inquiry into the magnificest works of the Ancients, which much exceeding our later times may feem to infer a decay in the fe Mechanicall arts.

Ch.11. That the Ancients bad divers motives and means for fuch vaft magnificent works, which we bave not.

Ch.12. Concerning the force of the Mechanick faculties; particularly, the Ballance and Leaver. How they may be contrived to move the whole world, or any other conceivable weight.

Ch.I3. of the Wheel, by multiplication of which, it is eafie to move any imaginable weight.

Ch.i4.

The Contents.

Ch.14. Concerning the infinite flength of Wheels, Pulleys, and Screws, that it is peffible by the multiplication of the fee, to pull up any oak by the roots with a hair, lift it up with a fir aw, or blow it up with ones breath, or to perform the greateff labour with the le aft power.

Ch. 15. Concerning the proportion of flownefle and fwifineffe in Mechanically motions.

Ch.I6. That it is possible to contrive Such an artificiall motion as foal be of a llowneffe proportionable to the fwiftneffe of the heavens.

Ch. 17. of wiftneffe, how it may be increased to any kind of proportion. Concorning the great force of Archimedes bis Engines. of the Ballifta.

Ch:18: Concerning the Catapult, or Engines for Arrows.

Ch. 19. A comparifon betwixt the fe ancient

The Contents.

ancient Engines, and the Gun-poroder inferaments now in sue.

Ch 20. That it is poffible to contrive Such an artificial motion, as may bee equally swift with the supposed motion of the heavens.

The fecond Book.

Cher. The divers kinds of Auroma. ta, or Self movers. of Mils. of the contrivance of \int several motions by ratified air. A brief digreßion concerming Wind-guns.

Ch. 2, of a failing Chariot, that may without hor foes be driven on the land by the wind as pips are on the ea.

Ch. 3. Concerning the fixed Automata, clocks, spheres reprefenting the bedvenly motions. The Several excellenvies that are mol commendable in fuck kind of contrivances.

Chi.

The Contents.

Ch.4. of the moveable and gradient Automate, representing the motions of living creatures, various founds, of birds, or beats, and lome of them articulate.

Ch.5. Concerning the poßibility of framing an Ark for Submarine Navigtions. The Difficulties and Conventences of Such a contrivance.

Ch.6. of the volant Automate; Archytas his Dove, and Regiomontanus his Eagle. The poffibility and great ufefulneffe of such inventions.

Ch.7. Concerning the Art of flying. The Several ways whereby this hath been, or may be attempted.

Ch. 8. A resolution of the two chief difficulties that feer to oppose the poffibibity of a flying Chariot.

Ch. 9. of a perpetual motion. The feeming facility and reall difficulty of any foch contrivance. The several ways

The Contents.

ways whereby it hath been attempted, particularly by Chymiftry.

Ch.10. of fubterraneous Lamps, divers biftoricall relations concerning their duration for many hundred years together.

Ch. II. Severall opinions concerning the nature and reason of the fe perpetuall Lamps.

Chap. 12. The molt probable conjeCure how the fe Lamps were framed.

Ch. I3. Concerning Several attempts of contriving a perpetuall motion by magneticall virtues.

Chap. 14. The seeming probability of effecting a continuall motion by Solid weights in a hollow wheele or sphere.

Ch.15.

The Contents.

Ch. 15 .of compofing aperpettal motion by furid weights.Concerning Archimedes his water-fcrew. The great probability of accomplifhing this inquiry by the belp of that, with the fallibleres of it uponexperiment.

ARCHI-

ARCHIMEDES,
0 R,
MECHANICALL Powers. The firlt Book.

Снар. I.

The excellency of thefe Arts. Why they were concealed by the Ancients. The Authours that have treated of them.
en L L thofe various ftudies a-罂 bout which the fons of men doe bufie their endevours, may be generally comprifed under thefe three kinds:
©Divine.
Naturall.
Artificiall.

2	Archimedes; or, Lib.i.
	To the firt of thefe, is reducible, not onely the feculation of Theologicall truths, but allo the practije of thole virtues, which may advansage our minds, in the enquiry after their proper happineffe. And thefe arts alone may truly be ftyled liberall, Que liberum faciunt hominem, quibus curr virtus eff, (faith the divine Stoick) which fer a man at liberty from his lufts and paffions. To the fecond may be reforred all that knowledge, which concerns the frame of this great Univerfe, or the ufuall courfe of providence in the government of thefe created things. To the laft doe belong all thofe inventions, whereby nature is any way quickned or advanced in her defects: Thefe artificiall experiments being (as it were) but fo many Effays, whereby men doe naturally atcempt to reftore themfelves from the firtt generall curfe inflicted upon their labours. This following Difcourre, does properly appertain to this latter kind.

Cap.1. Mechanicall Porbers,
Now Art may be faid, either to

But fo apt are we to contemn every thing which is common, that the ancient Philofophers efteemed it a great part of wifdome to conceale their learning from vulgar apprehenfion or ufe, thereby the better to maintain it, in its due honour anc refpect. And therefore did they generally vail all their Arts and Sciences, under fuch myfticall expreffions, as might excite the peoples wonder $\mathrm{B}_{2} \quad$ and

4	Archimedes; or, Libit.
Somr. Scip.1.1 c.2.	and reverence, fearing left a more eafie and familiar difcovery, might expofe them to contempt. Sic ipfa myfteria fabularum curiculis operiuntur, (ummatibus tantum viris, fapientia interprete, veri arcani confciis; Contenti fint reliqui, ad venerationem, figuris defendextibus à vilitate Secretum, faith a Platonick. Hence was it, that the ancient Mathematicians did place all their learning in abftracted fpeculations, refufing to debafe the principles of that noble profeffion unto Mechanicall experiments. Infomuch, that thofe very Authors amongtt them, who were moft eminent for their inventions of this kind, and were willing by their own practife, so manifeft unto their own practile, to manifeft unto the world, thofe artificiall wonders, that might be wrought by thefe arts, as Dadalus, Archytas, Archimsedes, ©.C. were norwithftanding fo much infected with this blind fupertition, as not to leave any thing in writing, concerning the grounds and manner of thefe operations.

Cap. i. Mechanicall Poobers.

 2 uistilians fpeaking to this purpole of Archimedes, faith thus. 2 uam. vis tantum tamque fingularem Geometria ufum, Archimedes, jingularibus exemplis, \& admirandis operibus offende. rit, propter que non bumane Jed divino fcientic landem Sit adeptus, hafit tamen in illa Platonis perfuafione, nee ullam Mechanicam literam prodere voluit.By which means, pofterity hath unhappily loft, not onely the benefit of thofe particular difcoveries, but alfo the proficiency of thofe arts in generall. For when once the learned men did forbid the reducing of them to particular ufe, and vulgar experiment: others did thereupon refufe thefe fudies themfelves, as being but empty and ufeleffe fpeculations. Whence it came to paffe that the fcience of Geometry was fo univerfally neglected, receiving little or no addition for many hundred years together.

Amongft thefe Ancients, the divine Plato is obferved to be one of the greateft fticklers for this fond B 3 opinion

Cap.1. Mechanicall Rowers.
on of it to Mechanicall practifes, that he rather thought it to be thereby adorned, as with curious variety, and to be exalted unto its naturall end. And whereas the Mathematicians of thofe former ages, did poffeffe all their learning, as covetous men doe their wealth, only in thought and notion ; the judicious Ariftotle, like a wife Steward, did lay it out to particular ufe and improvement, rightly preferring the reality and fubftance of publike benefit, before the fhadows of fome retired fpeculation, or vulgar opinion.

Since him there have been divers other Authors, who have been eminent for their writings of this nature. Such were Hero Alexandrixus, Hero Mechanicus, Pappus Alexandrinus, Proclus Mathematicus, Vitruvius, Guidus Vbaldus, Henricus Monantholius, Galileus, Guevara, Mer \int ennus, Bettinus,foc. Befides many others, that have treated largely of feverall engines, as Augufine Ramelli, Vittorio Zoncha, facobus Beffonius, Vegetius, Lipfius.

B 4
Moft

| 8 | Archimedes; or, Lib.I. |
| :---: | :---: | :---: |

Moft of which Authours I have perufed, and thall willingly acknowledge my felf a debtor to them for many things in this following Difcourfe.

Cap. II.

Concerning the name of this Art. That it may properly be fyyled liberall. The fubject and nature of it.

Lypfus. Polyorcet. l.1.Dia$\log 3$.
That's a fenflefie ablurd Etymology impofed by fome, 2 uia intellectus in eis moschostur, as if thefearts did proftitute and aculterate the underftanding.

THe word Mechanick is thought to
 tuon afcendere, pertingere : intimating the efficacy and force of fuch inventions. Or elfe пuegs μ in $\chi^{\text {aivern }}$, (faith Euflathius) quia bifcere non finit, becaufe thefe arrs are fo full of pleafant variety, that they admit not either of floth or wearineffe.

According to ordinary fignificarion, the word is ufed inoppofition to the liberall arts: whereas in propriety of fpeech thofe employments alone may be ftyled illiberall, which require onely fome bodily exercife, as manufactures, trades, icc. And on the con-

Cap.2. Mechanicall Poibers.
contrary that difciplite, which dif covers the generall caufes, effects, and properties of things, may truly beefteemed as a ppecies of Philofophy.

But here it fhould be noted, that this art is ufually diftinguifed into a twofold kind:
I. Rationall.
2. Cheirurgicall.

The Rationall is that which treats of thofe principles, and fundamentall notions, which may concern thefe Mechanicall practifes.

The Cbeirurgicall or Manuall, doth refer to the making of thefe inftruments, and the exerciifing of fuch particular experiments. As in the works of Architecture, Fortifications, and the like.

The firft of thefe, is the fubjeat of this difcourfe, and may properly be ftyled liberall, as jufty deferving the profecution of an ingenuous minde, For if we confider it according to its birth and originall, we fhall finde it to fpring from honourable parentage, being produced by Geometry on the one
10 Archimedes; or, Lib. 1.
one fide, and naturall Philofophy on the other. If according to its ufe and benefit, we may then difcern that to this fhould be referred all thofe arts and profeffions, fo neceffary for humane fociety, whereby nature is not onely directed in her ufuall courfe, but fometimes alfo commanded againft her own law. The particulars that concern Architecture, Navigation, Husbandry, Military affairs, \&c. are moft of them reducible to this art, both for their invention and ufe.
Thofe other difciplines of Logick, Rhetorick, \&c. doe not more protect and adorn the mind, then thefe Mechanicall powers doe the body.

And therefore are they well worthy to be entertained with greater induafry and refpect, then they commonly meet with in thefe times; wherein there be very many that pretend to be mafters in all the liberall arts, who fcarce undertand any thing in thefe particulars.

The fubject of this art is concerning the heavineffe of feverail bodies,

Mechanicall Powers. Cap.2. II

or the proportion that is required betwix: any weight in relation to the power which may be able to move it. And fo it refers likewife to violent and artificiall motion, as Philofophy doth to that which is naturall.

The proper end for which this art is intended, is to teach how by underftanding the true difference betwixt the weight and the power, a man may adde fuch a fitting fupplement to the ftrength of the power, that it fhall be able to move any conceivable weight, though it fhould never fo much exceed that force, which the power is naturally endowed with.

Theart it felf may be chus defcribed, to be a Mathematicall difcipline, which by the help of Geometricall principles doth teach to contrive feverall weights and powers, unto any kind, either of motion or reft, according as the Artificer fhall determine.

If it be doubred how this may be efteemed a Jpecies of Marhematicks, when as it treats of weights, and not

Dav. Rivaltus prafin lib. Archime. de centro gravitatis.

Cap.3. Mechanicall Powers.

Cap. III.

of the firft Mechanical faculty, the Ballance.

THe Mechanicall faculties, by which the experiments of this nature muft be contrived, are ufually reckoned to be thefe fix:

1. Likra. 1. The Ballance.
2. Vectios 2.The Leaver.
3. Axis in 3. The Wheel.

Peritrochio.
4. Trochlea. 4. The pulley.
5. Cuseus. 5.The Wedge.
6. Cochlea. 6. The Screm.

Unto fome of which, the force of all Mechanicall inventions muft neceffarily be reduced. I fhall fpeak of them feverally and in this order.

Firf, concerning the Ballance; this, \& the Leaver are ufually confounded together, as being but one faculcy, becaufe the generall grounds \& proportions of eithers force is fo exactly the fame.But for better diftinctió,\& more clear

Cap.3. Mechanicall Powers.

Suppofe an equall weight at C, unto that at B, (which points are both equally diftant from the center A,) it is evident that then the beam $B F$, will hang horizontally. But if the weight fuppofed at C, be unequall to that at B, or if there be an equall weight at $D E$, or any of the other unequall diftances; the Beam muft then neceffarily decline.

With this kinde of Ballance, it is ufuall by the help onely of one weight, to meafure fundry different gravities, whether more or leffe, then that by which they are meafured. As by the example here defcribed, a man may with one pound alone, weigh any other body within ten pounds, becaufe the heavineffe of any weight doth

16 Archimedes; or,
 Lib.ı.

doth increafe proportionably to its diftance from the Center. Thus one pound at D, will equiponderate unto two pounds at B, becaufe the diffance $A D$, is double unto $A B$. And for the fame reafon, one pound at E, will equiponderate to three pound at B, and one pound at F, unto ten at B, becaufe there is ftill the fame difproportion betwixt their feverall diftances.

This kind of Ballance is ufually ftyled Romana, ftatera. It feems to be of ancient ufe, and is mentioned by Arifotle under the name of $\phi d \lambda a r \xi$.

Hence it is eafie to apprehend, how that falle ballance may be compofed fo often condemned by the wife man,
Prov.II.I ca.16.11. 1tem, cap. 20.10.23.

Pappus. Collect. Mathem. l.8.

Mechar. ca. 2 I. as being an abomination to the Lord. If the fides of the Beam be not e qually divided, as fuppofe one have Io parts, and the other II, then any two weights that differ according to this proportion, (the heavier being placed on the fhorter fide, and the lighter on the longer) will equiponderate. And yet both the fcoles being empty, fhall hang in aquilibrio,

Cap.3. Mecinanicall Powers.	17
as if they were exactly juft and true, as in this defcription.	
Suppole $A C$, to have in fuch parts, whereof $A B$, has but 10 , and yet both of them to be in themfelves of equall weight ; it is certain, that whether the fcoles be empty, or whether in the fcole D, we put in pound, and at E, ro pound, yet both of them thall equiponderate, becaufe there is juft fuch a difproportion in the length of the fides $A C$, being unto $A B$, as in to io. The frequency of fuch courenages in thefe days, may be evident from common experience : and that they were ufed alfo in former ages, may C appear	

18 Arcbimedes; or, Lib. 1.

शurefion. Mechan. c. 2.

Budeus. Hence the proverb
Zygoftatica fides.
${ }^{1}$ Chron. 23.29.

Exod. 30. 13.

Lev. 27.25
appear from Arifotlesteftimony concerning the Merchants in his time. For the remedying of fuch abufes the Ancients did appoint divers officers, Atyled 弓uzasidul, who were to overlook the common meafures.

So great care was there amongft the Jews for the prefervation of commutative juftice from all abufe and falfification in this kind, that the publike ftandards and originals, by which all other meafures were to be tryed and allowed, were with much religion preferved in the fanctuary, the care of them being committed to the Priefts and Levites, whofe office it was to look unto all manner of meafures and fize. Hence is that frequent expreffion, According to the fbekel of the Sanctuary; and that Law, All thy effimations fhall bee according to the /bckel of the Sancluary, which doth not refer to any weight or coin, difinct from, and more then the vulgar, (as fome fondly conceive) but doth onely oblige men in their dealing and traffique to make ufe of fuch

Cap.3. Mechanicall Porbers.

juftimeafures, as were agreeable unto the publike ftandards that were kept in the Sanctuary.

The manner how fuch deceitfull ballances may be difcovered, is by changing the weights into each other fcole, and then the inequality will be manifef.

From the former grounds rightly apprehended, it is eafie to conceive how a man may finde out the juft proportion of a wéight, which in any point given, fhall equiponderate to feverall weights given, hanging in feverall places of the Beam.

Some of thefe ballances are made foexact, (thole efpecially which the refiners ufe) as to be fenfibly turn. ed with the eightieth part of a grain: which (though it may feeme very frange) is nothing to what * Capeltus relares of one at Sedan, that would turne with the four hundredth part of a grain.
There are feverall contrivances to make ufe of thefe in meafuring the

Mafter
Greaves Romane foot.

* De ponderibus co nummis
l.I. weight of blows, the force of powder,
the ftrength of ftrings，or other ob－ long fubftances，condenfed air，the di－ ftinct proportion of feverall metals mixed together，the different gravity of divers bodies in the water，from what they have in the openair，with divers the like ingenuous inquiries．
Cap．IV．
Concerning the fecond Mechanick fa－ culty，the Leaver．

THe fecond Mechanicall faculty，is the Leaver；the firft invention of it is ufually afcribed to Neptune， and reprefented by his Trident，which in the Greek are both called by one
$\mu 0^{\prime} \chi \lambda$ cs． Ariftotle （2）uefto Mechan． sap：4． Archime desyde ct－ quiponde rant．l．I． prop．7．
V估いまず～s
Arcbiteck．
6．10．c． 8. name，and are not very unlike in form， being both of them fomewhat broa－ der at one end，then in the other parts．
There is one main principle con－ cerning it，which is（as it were）the： veiy lum and epitome of this whole： art．The meaning of it is shus expref－

Cap.4. Mechanicall Powers.

is, as the weight is to an equivalent power, fo is the diftance betwixt the weight and the center, unto the diftance betwixt the center and the power, and fo reciprocally. Orthus, the power that doth equiponderate with any weight, muft have the fame proportion unto it, as there is betwixt their feverall diftances from the center or fulciment: as in this following figure.

Where fuppofe the Leaver to bee reprefented by the length $A B$, the center or ${ }^{*}$ prop at the point C, the weight to bee futtained D, the powerthat doth uphold it E.

Now the meaning of the forefaid principle doth import thus much; that the power at E, mult bear the
*This Ari fotle cals $\dot{\square} \mu 0^{\prime} \chi-$ д18or. Vitruvius, Prelfio.
Vbaldus
Fulcimer tum.Dan. Barbä̌us, Scabellums.

Cap.4. Mechanical Powers.
As in this Diagram at A, then the weight B, would require luch a difference in the ftrengths ot powers that did fuftain it, as there is berwist the feverall diftances $A C$, and $B C$. For as the diffance $A B$, is unto $A C$, to is the power at C, to the weight at B; that is, the power at A, mult bee double to that at C, becaufe the difance $B C$, is ewice as much as $B A$. From whence it is eafie to conceive, how any burden carried betwixt two perfons, may be proportioned according to their different ftrengths. If the weight were imagined to hang at the number 2 , then the power at C, would futtain but two of thofe parts, whereof that at A, did uphold 16. If it be fuppofed at the figure (3) then the ftrength at C, to that at A, would be buc as three to fifteen. But if it were fituared at the figure (g) then each of the extremities would participate of it alike, becaufe that being the middle, both the diftances are equall. If at the number ($\mathbf{r} \mathbf{2}$) then the frength at C, is required to be C_{4} double

Cap.4. Mechanical Powers.

Imagine the point A, to bee the place where any long fubftance (as fuppole a Pike) is luftained; it is evident from the former principle, that the ftrength at B, (which makes it lye levell) mult be equall to all the length $A C$, which is almoft the whole Pike.

And as it is in the depreffing, or elevating, folikewife is it in the drawing of any weight, as a Coach, Plow, or the like.

26	Archimedes; or, LIB.1
	Let the line $D B$, reprefent the Pole or Carriage on which the burden is futtained, and the line $A C$, the croffe barre; at each of its extremities, there is a feverall fring-tree $G H$, and $I K$, to which either horfes or oxen may be faftned. Now becaufe A, and C, are equally diftant from the middle B, therefore in this cafe the ftrength mult be equall on both fides; but if we fuppofe one of thefe fring traes to bee faftned unto the points E, or F, then the ftrength required to draw on that fide, will be fo much more, as the diftance $E B$, or $F B$, is leffe then that of $A B$; that is, either as three to four, as $E B$, to $B A$,

 Archimedes; or, Lib.'. Cap. V.
How the natural motion of living creatures is conformable to the fe artficiall rules.

THe former principle being aready explained, concerning artificall and dead motions, it will not be altogether impertinent, if in the next place, wee apply it unto thole that are naturall in living bodies, and examine whether there alpo are not governed by the fame kind of proportions.
In all perfect living creatures, there is a twofold kind of motive inftrumints:
I. Primary, the muffles.
2. Secondary, the members.
The muffles are naturally fitted to be instruments of motion, by the manner of their frame and compofuse; confifting of flefh as their chief materiall, and befides of Nerve, Ligatures, Veins, Arteries, and Membranes.
The

Cap.5. Mechanicall Powers.

The Nervs ferve for the conveyance of the motive faculty from the brain. The Ligatures for the ftrengthning of them, that they may not flag and languish in their motions. The Veins for their nourifhment. The $A r$ tcries for the fupplying of them with Spirit, and naturall vigor. The Membranes for the comprehenfion or inclofure of all thefe rogether, and for the diftinction of one mufcle from another. There are befides divers fibre or hairy fubftances, which nature hath beftowed for the farther corroborating of their motions; thefe being difperfed through every mufcle, do fo joyn together in the end of them, as to make intire nervous bodies, which are called Tendones, almoft like the grifles. Now this (faith Galen) may fitly be compared to the broader part of the Leaver, that is put under the weight, which, as it ought to be fo much the ftronger, by how much it is put to a greater force; fo likewife by this, doth nature inable the mufcles and nervs for

De Placit. Hippoc. of Platon.l.x. Ca.10.

30	Archimedes; or, Lib.i
	for thofe motions, which otherwile would be too difficult for them. Whence it may evidently appear, that according to the opinion of that eminent Phyfitian, thefe naturall motions are regulated by the like grounds with the artificiall. 2. Thus alfo is it in thofe fecondary inftruments of motion, the members : amongt which, the hand is ogzavor ¿ppavar, the inftrument of inftruments, (as Galen ftyles it;) and as the foul of man doth bear in it the image of the divine wifdome and providence, fo this part of the body feems in fome fort to reprefent the omnipotency of God, whileft it is able to perform fuch various and wonderfull effects by the help of this art. But now for its own proper naturall ftrength, in the lifting any great weight; this is always proportioned according to its extenfion from the body, being of lealt force when it is fully ftretched our, or at arms end, (as we fay) becaufe then the fhoulder joynt is as the center of

Cap.5. Mechanicall Powers.

its motion, from which, the handin that pofture, being very remote, the weight of any thing it holds muft be accordingly augmented. Whereas the arm being drawn in, the elbow joynt doth then become its center, which will diminifh the weight proportionably, as that part is neerer unto it then the other.

To this purpofe alfo, there is another fubtle probleme propofed by Arifotle, concerning the poftures of fitting and rifing up. The quære is this, Why a man cannot rife up from his feat, unleffe he firt, either bend his body forward, or thruft his feet backward.

In the pofture of fitting, our legs are fuppofed to make a right angle with our thighs, and they with our backs, as in this figure.

Where

Cap.5. Mechanical Poovers.
For the refolution of which, the Philolopher propofes thefe two particulars.
I. A right angle (faith he) is a kind of equality, \& that being naturally the caufe of reft, mult needs be an impediment to the motion of rifing.
2. Becaufe when either of the parts are brought into an acute angle, the head being removed over the feet, or they under the head; in fuch a pofture the whole man is much neerer difpofed to the form of ftanding, wherein all thefe parts are in one ftreight perpendicular line; then he is by the other of right angles, in which the back and legs are two parallels ; or that of turning thefe ftreight angles into obtufe, which would not make an erect pofure but declining.

But neither of thefe particulars(as I conceive) doe fully fatisfie the prefent quære, neither doe the Commentators, Monantholius, or Gwevara, better refolve it. Rather fuppofe BC, to be as a Vectis or Leaver, toD

34	Archimedes; or, Lib.1.
	wards the middle of which is the place of the fulciment, $A B$, as the weight, $C D$, the power that is to raife it. Now the body being fituate in this rectangular forme, the weight $A B$, mult needs be augmented proportionably to its diftance from the fulciment, which is about halfe the thighs; whereas if we fuppofe either the weight to be inclined unto F, or the power to E, or both of them to G H, then there is nothing to bee liffed up but the bare weight it felf, which in this fituation is not at all increafed with any addition by difance. For in thefe conclufions concerning the Leaver, we muft always imagine that point which is touched by a perpendicular from the center of gravity, to be one of the tearms. So that the diverfeelevation or depreffion of the inftrument, will in ferre a great alceration in the weight it felf, as may more elearly be difcerned by this following D iagram.

CAP.5. Mechanicall Powers.

Where A, is fuppofed to be the place of the prop or fulciment, $B C$, a Leaver which ftands horizonrally, the power and the weight belonging unto it, being equall both in themfelves, and alfo in their diffances from the prop.

But now fuppofe this inftrument to be altered according to the fituation $D E$, then the weight D, will be diminifhed, by fo much, as the perpendicular from its center of gra-
D_{2}
vity

36	Archimedes; or, Lib.1.
	vity $H I$, doth fall nearer to the prop or fulciment at A. And the power at E, will be fo much augmented, as the perpendicular fró its center ($K E$) does fall farther from the point at A. And fo on the contrary in that other fituation of the Leaver $F G$; whence it is-eafie to conceive the true reafon, why the inclining of the body, or the putting back of the leg, fhould fo much conduce to the facility of rifing. From thefe grounds likewife may we underftand, why the knees fhould be moft weary in afcending, and the thighs in defcending, which is, becaufe the weight of the body doth bear moft upon the knee-joynts, in raifing it felf up, and moft upon the mufcles of the thighs when it flays it felf in comming down. There are divers other naturall problemes to this purpofe, which I forbear to recite. We doe not fo much as goe, or fit, or rife, without the ufe of this Mechanicall Geometry.

Cap.6. Mechanicall Powers.

$$
\text { Cap. VI. }^{\text {. }}
$$

Concerning the Wheel.

THe third Mechanicall faculty is commonly ftyled axis in peritrocbio. It confifts of an axis or cylinder, having a rundle about it, wherein there are faftned divers fpokes, by which the whole may bee turned round; according to this figure.

Called likewife bros. Arift.' mecban.
C.I4.

Where $B C$, does reprefent the Cylinder which is fuppofed to move upon a fmaller Axis at E, (this being all one in comparifon to the feverall proportions, as if it were a meere Mathematicall line) $L G$, is the rundle or wheel, H FI K, feverall fpokes or handles that are faftned in it; D, the place where the cord is faftned for the drawing or lifting up of any weighe.

The force of this inftrument doth confift in that dif-proportion of difance, which there is betwixt the Semidiameter of the Cylinder $A B$, and the Semidiameter of the rundle with the fpokes $F A$. For let us conceive the line $F B$, to be as a Leaver, wherein A, is the center or fulciment, B, the place of the weight, and F, of the power. Now it is evident from the former principles, that by how much the diftance $F A$, is greater then $A B$, by fo much leffe need the power be at F, in refpect of the weight at B. Suppofe $A B$, to be as the tenth part of $A F$, then that pow-

Cap.6. Mechanical-Rowers.
er or ftrength, which is but as a hundred pound at F, will be equall to a thoufand pound at B.

For the clearer explication of this faculty, it will not be amiffe to confider the form of it, as it will appear being more fully expofed to the view. As inthis other Diagram.

Suppofe $A B$, for the Semidiameter of the Axis or Cylinder, and $A C$, for the Semidiameter of the rundle, with the fpokes; then the power

$$
\mathrm{D}_{4} \text { at }
$$

at C, which will be able to fupport the weight D, muft bear the fame proportion unto it, as $A B$, doth to $A C$: fo that by how much fhorter the diftance $A B$, is in comparifon to the diftance $A C$, by fo much leffe need the pow r be at C, which may be able to fupport the weight D, hanging at B.
And fo likewife is it for the other ípokes or handles EFGH, at either of which, if we conceive any power, which fhall move according to the fame circumference wherin thefe handies are placed, then the ftrength of this power will be all one, as if it were at C. But now fuppofing a dead weight hanging at any of them, (as at E,) then the difproportion will vary. The power being fo much leffe then that at C, by how much the line $A C$, is longer then $A I$. The weight K, being of the fame force at E, as if it were hung at I, in which point the perpendicular of its gravity doth cut the Diameter.
The chief advantage which this in-
$\frac{\text { Cap.6. Mechanical Toovers. }}{\text { inftrument doth beftow, above that }}$ of the Leaver, doth confift in this particular. In a Leaver, the motion can bee continued onely for fo fhort a fpace, as may be anfwerable to that litcle diftance betwixt the fulciment and the weight: which is always by fo much leffer, as the difproportion betwixt the weight and the power is greater, and the motion it felf more eafie : But now in this invention, that inconvenience is remedied; for by a frequent rotation of the axis, the weight may be moved for any height or length, as occafion fhall require.

Unto this faculty may we referre the force of all thofe engines which confift of wheels with teeth in them.

Hence alfo may wee difcerne the reafon why fundry inftruments in common ufe, are framed after the like form with thefe following figures.

41

All which are but feverall kinds of this third Mechanicall faculty. In which the points $A B C$, doe reprefent the places of the power, the fulciment, and the weight. The power being in the fame proportion unto the weight, as $B C$ is unto $B A$.

Cap.

TMechanicall Ponders. CAP. 7 .

Cap. VII.

Concerning the pulley. Hat which is reckoned for the fourth faculty, is the Pulley: which is of fuch ordinary ufe, that it needs not any particular defcription. The chief parts of it are divers lite rundles, that are moveable about their proper axes. Thee are ufually divided according to their feverall fituations, into the upper and lower. If an engine have two of the fe rundies above, and two below, it is urually called síasosos, if three, teímosesos, if many, тTonúatasos.

The lower Pulleys onely doe give force to the motion. If we fuppofe a weight to hang upon any of the upper rundles, it will then require a power, that in it felfe mall be fully equall for the fuftaining of it.

The
44 Archimedes; or, Lib.i.

The Diamerer $A C$, being as the beam of a ballance, of which B is the prop or center. Now the parts A, and C, being equally diftant from this center, therefore the power at E, muft be equall to the weight at D, it being all one as if the power and the weight were faftned by two feverall ftrings at the ends of the ballance $F G$.
Now all the upper Pulleys being of the fame nature, it mult neceffarily follow, that none of them doe in themfelves conduce to the eafing of the power, or lightning the weight, but onely for the greater convenien-

Cap.7. Mechanicall Powers.	45
cy of the motion, the cords by this means running more eafily moved then otherwife they would. But now fuppofe the weight to be fuftained above the Pulley, as it is in all thofe of the lower fort: and chen the power wch fupports it, need be but half as much as the weighs it felf.	
Let $A C$, repretent the Diameter of a lower Pulley, on whofe center at B, the weight is faftned, one end of the cord being tyed to a hook at D. Now it is evident, that halfe the weight is fuftained at D, fo that there is but the other half left to be fuftained	

46 Arclimedes; or,
 Lib. 1

fuitained by the power at E. It being all one as if the weight werecyed unto the middle of the ballance $F G$, whofe ends were upheld by two feverall ftrinss, $F H$, and $G I$.

And this fame fubduple proportion will fill remain, though we fuppofe an upper Pulley joyned to the lower, as in thefe two other figures.

Cap.7. Mechanicall Powers.

Where the power at A, is equall to the weight at $B:$ Now the weight at B, being but half the ponderofity C, therefore the power at A, notwithftanding the addition of the upper rundle, muft be equivalent to half the weight, and as the upper Pulley alone, doth not abate anything of the weight, fo neither being joyned with the lower, \& the fame fubduple difference betwixt the power and the weight, which is caufed by the lower Pulley alone, doth ftill remain unaltered, though there be an upper Pulleyadded unto it.

Now as one of thefe under Pulleys doth abate halfe of that heavineffe which the weight hath in it felf, and caufe the power to be in a fubduple proportion unto it, fo two of them doe abate halfe of that which remains, and caufe a fubquadruple proportion betwixt the weight and the power; three of them a fubfextuple, four a fuboctuple: and fo for five, fix, or as many as thall berequired, they will all of them diminifh

CAP.7. Mechanicall Powers.
according to fundry different fituati-

52	Archimedes; or, Lab.l.
	To the uppermoft of thefe at A, there fhould be faftned a Tharp graple or cramp of iron, which may be ape to take hold of any place where it lights. This part being firf caft up and faftned, and the faffe $D E$, at the nether end, being put betwixt the legs, fo that a man may fit upon the other $B C$, and take hold of the cord at $F_{\text {. }}$ it is evident that the weight of the perfon at E, will be but equall to half fo much ftrength at F; fo that a man may eafily pull himfelf up to the place required, by leaning but little more then half of his own weight on the ftring F. Or if the Pulleys be multiplyed, this experiment may then be wrought with leffe labour.
	Cap, VIII. of the Wedge.

$T \mathrm{He}$ fift Mechanicall faculty is the Wedge, which is a known inftrument, commonly ufed in the cleaving

Cap.8. Mechanicall Powers.
ving of wood. The efficacy and great

I. The form of it.
2. The manner whereby the power is impreffed upon it, which is by the force of blows.

1. The form of it reprefents (as it were) two Leavers.

Each fide $A D$, and $A E$, being one, the points $B C$, being in llead of feverall props or fulciments; the weight to be moved at A, and the power that fhould move it, being applyed to the top $D E$, by the force of fome ftroake or blow : as Ariftotle hath explained the feverall parts of this faculty. But now, becaufe this inftrument may be fo ufed that the
\qquad
54 Archimedes; or, Lib.1.
point of it hall not touch the body to be moved, as in there other flgules;

Therefore Vbaldus hath more exactly applyed the feverall parts of it according to this form, that the point A, should be as the common fulcimont, in which both the fides doe meet, and (as it were) uphold one another ; the points B, and C, reprefencing that part of the Leavers where the weight is placed.
It is a generall rule, that the more acute the angles of there wedges are, by fo much more eafie will their mocion be; the force being more eafity impreffed, and the face wherein the body is moved, being fo much the life.
The

Cap.8. Mechanical Powers.
The fecond particular whereby this faculy hath its force, is the manner whereby the power is impreft upon it, which is by a froak or blow; the efficacy of which doth much exceed any other ftrength. For though we fuppofe a wedge being laid on a piece of timber, to be prefled down with never fo great a weight ; nay though we fhould apply unto it the power of thofe other Mechanicall engines, the Pulley, Screw, \&c. yet the effect would be fcarce confiderable in comparifon to that of a blow. The true reafon of which, is one of the greateft fubtilties in nature, nor is it fully rendred by any of thofe who have undertaken the refolution of it. * Arifotle, Cardan, and Scaliger, doe generally afcribe it unto the fwiftneffe of that motion; But there feems to be fomething more in the matter then fo; for otherwile it would follow that the quick ftroak of a light hammer, fhould be of greater efficacy, then any fofter and more gentle ftriking of a great E_{4} nedge.

56	Archimedes; or, Lib.i
	fledge. Or according to this, how fhould it come to paffe, that the force of an arrow or bullet difcharged near at hand (when the impreffion of that violence, whereby they are carried, is moft frefh, and fo in probability the motionat its (wifteft) is yet notwithftanding much leffe then it would be at a greater diftance. There is therefore further confiderable, the quality of that inftrument by which this motion is given, and alfo the conveniency of diftance through which it paffes. Unto this faculty is ufually reduced the force of files, faws, hatchers, \&c. which are as it were but fo many wedges faftned unto a $V \in$ ctis or Leaver
	CAp. IX. of the Screw. T Hat which is ufually recited for the fixth and laft Mechanick faculty, is the Screw, which is defcribed to be a lind of wedge that is multiplyed

Cap.9. Mechanical Poovers.
plyed, or continued by a helicall re-

The former is noted in the figure with the letter A, the other with F. Ariftotle himfelf doth not fo much as mention this inftrument, which yet notwithftanding is of greater force and fubtilty, then any of the reft. It is chiefly applied to the fqueezing or preffing of things downewards,

57

Pappus collect. Mathe mat.l.8.
58 Archimedes; or, Lib. 1.
wards, as in the Preffes for printing, for wine, oyl, and extracting the juice from other fruits. In the performance of which, the ftrength of one man may bee of greater force, then the weight of a heavy mountain : It is likewife ufed for the elevating or lifting up of weights.

The advantage of this faculty above the reft, doth mainly confift in this: the other inftruments doe require fo much ftrength for the fupporting of the weight to be moved, as may be equall unto it, befides that other fuperadded power whereby it is out-weighed and moved; fo that in the operations by thefe, a man does always fpend himfelf ina continued labour.
Thus (for example) a weight that is lifted up by a Wheel or Pulley, will of it felf defcend, if there bee not an equall power to fuftain it. But now in the compofure of a Screw, this inconvenience is perfectly remedied; for fo much force as is communicated unto this faculty, from the

Mechanicall Powers. CAP.9. 99

power that is applied unto it, is ftill retained by the very frame and nature of the inftrument it felf; fince the motion of it cannot poffibly return, but from the very fame place where it firft began. Whence it comes to paffe, that any weight lifted up, with the affiftance of this engine, may likewife be fuftained by it, without the help of any externall power, and cannot again defcend unto its former place, unleffe the handle of the Screw (where the morion firft began) be turned back: fo that all the ftrength of the power, may be imployed in the motion of the weight, and none fpent in the fuftaining of it.

The chief inconvenience of this inftrument is, that in a fhort fpace it will be fcrewed unto its full length, and then it cannot be of any further ufe for the continuance of the motion, nuleffe it be returned back, and undone again as at the firft. But this is ufually remedied by another invention, commonly fyled a perpetuall
(1)

Forthe compofure of which, inftead of the female, or concave fcrew, there muft be a little wheel, with fome notches in it, equivalent to

It is ufed in fome Watches. teeth, by which the other may take hold of it, and turn it round, as in thefe other figures.

This latter engine does fo far exceed all other contrivances to this purpofe, that it may jufly feem a wonder why it is not of as common ufe

Cap. 10. Mechanical Powers.
ufe in thefe times and places, as any of the reft.

> Cap. X.

An enquiry into the magnificent works of the Ancients, which much excseding our latter times, may feeme to inferre a decay in thefe Mechanicall Arts.

THus have I briefly treated concerning the generall principles of Mechanicks, cogether with the diftinct proportions betwixt the weight and the power in each feverall faculty of it; Whence it is eafie to conceive the truth and ground of thofe famous ancient monuments, which feem almoft incredible to thefe following ages. And becaule many of them recorded by Antiquity, were of fuch valt labour and magnificence, and fo mightily difproportionable to humane ftrength, it thall not therefore be impertinent unto the purpofe I aim ar, for to feecifie fome
Li.2.6.175

Plin.l.36: ca. 12 .

Plin.l.37. cap.5.

of the moft remarkable amongft them, and to inquire into the means and occafion upon which they were firt attempted.

Amongit the \mathcal{E} gyptians; we read of divers Pyramids, of fo vaft a magnitude, as time it felf in the fpace of fo many hundred years hath not yet devoured. Herodotis mentions one of them, erected by Cleopes an Egyptian King, wherein there was not any one fone leffe then 30 foot long, all of them being fetched from Arabia. And not much after, the fame Authour relates, how Amafis another etyptian, made himfelf a houfe of one entire fone, which was 21 cubits long, r4 broad, and 8 cubirs high. The fame $A m a f i s$ is reported to have made the flatue of a Sphinx, or Egyptian cat, all of one fingle ftone, whofe length was 143 foor, its height 62 foor, the compaffe of this fatues head containing 102 foor. In one of the Egyptian temples confecrated to $\mathcal{F} u$ piter, there is related to be an Obelisk, confifting of 4 Smaragds or

Cap.10. Mechanical Powers.
or Emeralds; the whole is 40 cubits high, 4 cubits broad at che bottome, and two ar the top. Sefof fris the King of \nVdash gypt in a Temple at Memphis, dedicated to vulcan, is reported to have erected two ftatues; one for himfelf, the other for his wife, both confifting of two feverall ftones, each of which were 30 cubits high.

Amongft the Jews we read in facred Writ of Solomons Temple, which for its ftate and magnificence, might have been juftly reckoned amongit the other wonders of the world, wherein befides the great riches of the materials, there were works too of as great labour. Pillars of braffe 18 cubirs high, and 12 cubits round, great and coftly fones for the foundation of it. Foofephus tels us that fome of them were 40 cubits, others 45 cubits long. And in the fame chapter he mentions the three famous Towres buile by Herod, wherein cvery fone being of white marble, was 20 cubits long, ro broad, and 5 high. And which was the greateft won-

Cap.10. Mechanicall Powers. wonderfull, which a Grecian Architeet did propound unto Alexander, to cut the mountain Athosinto the forme of a ftatue, which in his right hand fhould hold a Town capable of ten thoufand men, and in his left a Verfell to receive all the water that flowed from the feverall fprings in the mountain. But whether Alexander in his ambition did feare that fuch an Idoll fhould have more honour then he himfelf, or whether in his good husbandry, hee thought that fuch a Microcofme (if I may fo ftyle it) would have coft him almoft as much as the conquering of this great world, or what ever elfe was the reafon, he refufed to attempt it.
Amongft the Romanes we read of a brazen Coloffus, made at the command and charges of Nero, which was 120 foor high; Martiall cals it Sydereus, or ftarry.

Hic ubi Sydereus propius videt astra ColofJus. And it is foried of M. Curio, that hee erected two Theaters fuffici$F \quad$ ently
66 Archimedes; or, Lib.1.
ently capacious of people, contrived moveable upon certain hinges; Sometimes there were feverall playes and fhows in each of thé, neither being any difturbance to the other; \& fometimes they were both turned about, with the people in them, and the ends meeting together, did make a perfect Amphitheater: fo that the fpectators which were in either of them, might joyntly behold the fame fpectacles.
IdëTiti.jı.
There were befides at Rome fundry obelisks, made of fo many intire ftones, fome of them 40 , fome 80 , and others 90 cubits high. The chief of them were brought out of Agypt, where they were dug out of divers quarries, \& being wrought into form, were afterwards (not without incredible labour, and infinite charges) conveyed unto Rome. In the year 1586, there was erected an old 0 belisk, which had been formerly dedicated unto the memory of fullius Cefar. It was one folid fone, being an Ophite or kind of fpotted Marble. The height of it was 107 foor, the breadth of it
Cap.10. Mechanicall 1 Oowers.
at the botrome was in foot, at the rop 8. Its whole weight is reckoned to be 956148 pounds, befides the heavineffe of all thofe inftruments that were ufed about it, which (as it is thought) could not amount to leffe then 1042824 pounds. It was tranfplaced at the charges of Pope Sixtus the fith, from the left fide of the Vatican, unto a more eminent place about a hundred foor off, where now it ftands. The moving of this obelisk is celebrated by the writings of above 56 feverall Authours, (firith Monantholius) all of them mentioning it, not withour much wonder and praife. Now if it feem foftrange and glorious an attempt to move this obelisk for fo litile a fpace, what then may we think of the carriage of it our of Fgypt, and divers other far greater woiks performed by Antiquity? This may feem to infer, thar thefe Mechanicall ares are now loft, and decayed amongft the many other ruines of time: which yet nowwithfanding cannot be granted, without much ingrati-

$$
\text { F } 2 \text { tude }
$$

cude to thofe learned men, whofe labours in this kind we enjoy, and may jufly boaft of. And therefore for our better underftanding of thefe particulars, it will not be amiffe to enquire both why, and bow, fuch works fhould be performed in thofe former and ruder ages, which are not, and (as it (hould feem) cannot be effected in thefe later and more learned times. In the examination of which, wee fhall finde that it is not the want of art that difables us for them, fince thefe Mechanicall difcoveries are altogether as perfect, and (Ithink)much more exact now, then they were heretofore; but it is, becaufe we have not either the fame motives, to attempt fuch works, or the fame means to effect them as the Ancients had.

Cap.11. Mecíanical Powers.

Cap. XI.

That the Ancients had divers motives and means for fuch vaft magnificent works, which we bave not.

THe motives by which they were excited to fuch magnificent atrempts, we may conceive to be chiefly three :

$$
\left\{\begin{array}{l}
\text { Religion. } \\
\text { Policy. } \\
\text { Ambition. }
\end{array}\right.
$$

1. Religion. Hence was it that moft of thefe ftately buildings were intended for fome facred ufe, being either Temples or ${ }^{*}$ Tombes, all of them dedicated to fome of their Deities. It was an in bred principle in thofe ancient Heathen,that they could not chufe but merit very much by being liberall in their outward fervices. And therefore we read of Crafus, that being overcome in a battell, and taken mids, Obe lisks.

Herodot.
l. 1. by Cyrus, he did revile the gods of ingratitude, becaufe they had no better care of him, who had fo frequently F3 adored

Cap.11. Mechanical Powers.
dome did not lye idly in their kings treafuries, but was always in motion, which could nor but be a great advantage, and improvement to the Common-wealth. And perhaps fome of them feared left if they fhould leave too much money unto their fucceffors, it might be an occafion to infnare them in fuch idle and vain courfes, as would ruine their kingdomes. Whereas in thefe later ages, none of all thefe politick incitements can be of any force, becaufe now there is imployment enough for all, and mony litele enough for every one.
3. Ambition to be known unto pofterity; and hence likewife arofethat incredible labour and care they beftowed, to leave fuch monuments behinde them, as might * continue for ever, and make them famous unto all after ages. This was the reafon of Abfalons pillar, fpoken of in Scripcure, to keep bis name in rememerance. And doubtleffe this too was the end which many other of the Ancients have aimed at, in thofe (as they F_{4} chought)

* Páal. 49. II. more active and firing: fo that every ambitious man may find fo much bufineffe for the prefent, that he fall farce have any leifure to trouble himfelf about the future. And therefore in all there refpects, there is a great difproportion betwixt the incitements of thole former and there later times unto fuck magnificent attempts.

Again, as they differ much in their motives unto them, folikewife in the manes of effecting them.

There was formerly more leifure and opportunity, both for the great men to undertake fuch works, and for the people to perfect them. Thole pant ages were more quiet and peaceable, the Princes rather wanting imployment, then being over preft with it, and therefore were willing to make choice of fuch great defigns, about which to bufie themfelves: whereas now the world is growne more politick, and therefore more trouble-

Cap.11. Mechanical Powers.
troublefome, every grear man having orther private and neceffary bufineffe about which to imploy both histime and means. And fo likewife for the common people, who then living more wildly without being confined to particular trades and profeffions, might be more eafily collected about fuch famous imployments; whereas now, if a Prince have any occafion for an Army, it is very hard for him to raife fo great a multitude, as were ufually imployed about thefe magnificent buildings. We read of 360000 men that were bufied for twenty years in making one of the Ægyptian Pyramids. And Herodotus tels us of 1000000 men who were as long in building another of them. About the carriage of one ftone for $A m a / i s$ sthe diftance of twenty days journy, there was for three years together imployed 2000 chofen men, Governours, befides many other under-labourers. 'Twas che opinion of * fofephus and Nazienzen, that thefe Pyramids were built by foofeply for granaries againft the years

Archimedes; or,
 Lib. 1

years of famine. Others think that the brick made by the children of Ifrael, was imployed about the framing of them, becaufe we read that the Tower of Babel did confift of brick or artificiall ftone, Gen. II. 3. And if there were the labourers that were bufied about them, 'tis no wonder though they were of fo vaft a mag. nitude; for we read that the children of Ifrael at their comming out of \mathbb{E} gype, were numbred to be fix hundred thouland, and three thoufand, and five hundred and fify men, Numb.r. 46. fo many handfuls of earth would almoft make a mountain, and therefore wee may eafily beleeve that fo great a multitude in fo long a fpace as their bondage lafted, for above four hundred years, might well enough accomplifh fuch vaft defigns.
In the building of Solomons Temple, there were threefcore and ten thoufand that bare burdens, and fourfcore thoufand hewers in the mountains, x Kings 5.15 .
The Ephefian Temple was buile by

Mechanicall Powers. CAP.12.' 75

all $A f i a$ joyning together, the 127 pillars were made by fomany kings, according to their feverall fucceffions, the whole work being not finifhed under the fpace of two hundred and fifteen years. Whereas the tranfplacing of that Obelisk at Rome by Sixtus the fift, (fpoken of before) was done in fome few days by five or fix hundred men; and as the work was much leffe then many other recorded by Antiquity: fo the means by which it was wrought, was yet far leffe in this relpect then what is related of them.
2. The abundance of wealth, which was then ingroffed in the poffeffion of fome few particular perfofs,being now diffured amongft a far greater number. There is now a greater equality amongft mankind, and the flourifhing of arts and fciences, hath fo firred up the fparks of mens naturall nobility, and made them of fuch active and induftrious fpirits, as to free themfelves in a great meafure from that flavery, which thofe former and wilder

Cap.12. Mechanical Powers.
of fome private Romane Citizens,
Cither

3. Adde unto the two former confiderations that exact care and indefatigable induffry which they beftowed in the raifing of thofe ftructures: Thefe being the chief and only defigns on which many of them didimploy all their beft thoughts and utmoft endevours. Cleopes an Ægyptian King is reported to have been fo defirous to finih one of the Pyramids, that having fpentall about it he was worth, or could poffibly procure, he was forced ar laft to proftitute his own daughter for neceffary maintenance. And we read of Ramifes another King of Ægypr, how that he was fo careful to erect an Obelisk, about wid he had imployed 20000 men, that when he feared left through the negligence of the artificers, or weakneffe of the engine,

Plis.l.36. c.9.

77

78
Hijfor.Ind.
l. G.c.14.

gine, the ftone mighe fall and break, he tyed his own fon to the top of it, that fo the care of his fafety mighe make the workmen more circumf(pect in their bufineffe. And what Atrange matters may be effected by the meer diligence and labour of grear multitudes, we may eafily difcern from the wilde Indians, who having not the art or advantage of Engines, did yet by their unwearied induftry remove ftones of an incredible greatneffe. A coffa relates that he himfelf meafured one at Tiagumaco, which was thircy eight foor long, eighteen broad, and fix chick, and he affirms that in their ftatelieft x difices, there were many other of much vafter magnitude. =From all which confiderations it may appear, that the ftrangeneffe of thofe ancient monuments above any that are now effected, does not neceffarily infer any defect of art in thefe later ages. And I conceive, it were as cafie to demonftrate the Mechanicall Arts in thefe times to be fo farre beyond the knowledge of former

Cap.13. Mechanical Powers.
ages, that had we but the fame means as the Ancien's had, we might effect far greater matters then any they attempted, and that too in a fhorter Ipace, and with leffe labour.

> Cap. XII.

Concerning the force of the Mechanick faculties, particularly the Ballance and Leaver. How they may be contrived to move the whole world, or any other conceivable weight.

A L thefe magnificent works of the Ancients before fpecified, are fcarce confiderable in refpect of art, if we compare them with the famous fpeeches and acts of Archimedes: Of whom it is reported that he was frequently wont to fay, how that he could move, Datum pondus cum datâ potentiâ, The greateft conceivable weight with the leaft conceivable power; and that if he did but know where to ftand and faften his inftrument, he could move the world, all this

CaP. 12. Mechanical Powers.
vity, they would both equiponde. ratc. And if the diftance of the power from the center, in comparifon to the diftance of the weight, were but any thing more then the heavineffe of the weight is in refpect of the power, it may then be evident from the former principles, that the power would be of greater force then the weight, and confequently able to move it.

Thus if we fuppofe this great globe at A, to G con-
82 Archimedes; or, Lib:1.

Statical.3. propio.

Lip (IusPOliorcet.l.1. Dialog.6.
cötain 240000000000000000000000 pounds, allowing a hundred pound for each cubicall foot in it, (as Stevinius hath calculated) yet a man or childe at D, whofe ftrength perhaps is but equivalent to one hundred, or tenne pounds weight, may be able to outweigh and move it, if there be but a little greater difproportion betwixt the two diftances $C D$, and $C B$, then there is betwixt the heavineffe of the weight, and the frength of the power, that is, if the diftance $C D$, unto the orher diftance $C B$, be any thing more thê 2400000000000000000000000 unto 100 or 10 , every ordinary inftrument doth include all thefe parts really, though not fenfibly diftinguithed.

Under this latter faculty I did before mention that engine by which Archemedes drew up the Roman fhips, at the fiege of Syracufe. This is ufually ftyled Tollenon, being of the fame form with that which is commonly ufed by Brewers, and Dyers, for the drawing of water. It confifts of two
Cap.12. Mechanicall Powers. in the ground, the other being jointed on croffe to the rop of it. At the end he faftned a ftrong hook or grapple of iron, which being let over the wall to the river, he would thereby take hold of the fhips, as they paffed under; and afterwards by applying fome weight, or perhaps the force of Screwes to the other end, hee would thereby life them into the open air, where having fwinged them up and down till he had haked out the men and goods that were in them, he would then dafh the Veffels againft the rocks, or drown them in their fudden fall : infomuch that Marcellus the Roman Generall was wont
 Tus Ap x tuidion, That Archimedes made ufe of his Thips in Atead of Buckets, to draw water with.

This faculty will be of the fame force, not only when it is continued in one, but alfo when it is multiplied in divers inftruments, as may be conceived in this other form, which I

Plutach. in his life.

84	Archimedes;or, Lib.l
	doe not mention, as if it could be ferviceable for any motion (fince the fpace by which the weight would be moved, will be fo little as not to fall under fenfe) but only for the better explication of this Mechanick principle, and for the right undertanding of that force arifing from multiplication in the other faculties, which doe all depend upon this. The Wheel, and Pulley, and Screw, being but as fo many Leavers of a circular form and motion, whofe ftrength may therefore be continued to a greater fpace.

Imagine the weight A, to be a hundred thoufand pounds, and the diftance of that point, wherein every Leaver touches either the weight or one another from the point where they touch the prop, to be but one fuch

Cap. Io. Mechanicall Powers.
fuch part; whereot the remainder contains ten, then according to the former grounds 10000 at B, will equiponderate to A, which is 100000, to that the fecond Leaver hath but roooo pounds to move. Now becaule this obferves the fame proportions with the other in the diftances of its feverall points, therefore 1000 pounds at C, will be of equall weight to the former. And the weight at C, being but as a thoufand pound, that which is but as a hundred at D, will be anfwerable unto it; and fo ftill in the fame proportion, that which is but ro at E, will be equall to 100 at D; and that which is but one pound at F, will alfo be equall to ten at E. Whence it is manifeft, that I pound at F, is equall to 100000 at A; and the weight muft always be diminifhed in the fame proportion as ten to one, becaufe in the multiplication of thefe Leavers, the diftance of the point, where the inftrument touches the weight, from that where it touches the prop, is but as one fuch G 3 part

Cáp.13. Mechanical Powers.

and the ftrength of a man, it may then be evident, that this ftrength of one man, by the help of fuch an inftrument, will equiponderate to the weight of the whole world. And if the Semidiameter of the wheel $A C$, be but any thing more in refpect of the Semidiameter of the axis $A B$, then the weight of the world fuppofed at D, is in comparifon to the ftrength of a man at C; it may then be manifeft from the fame grounds that this ftrength will be of fo much greater force then the weight, and confequently able to move it.

The force of this faculty may be more conveniently underftood and ufed by the multiplication of feverall wheels, together with nuts belonging unto each of them;as it may be eafily experimented in the ordinary Jacks that are ufed for the roafting of meat, which commonly confift but of three wheels, and yer if we fuppofe a man tyed in the place of the weight, it were eafie by a fingle hair fafted unto the fly or ballance of the G 4 Jack,

Anengine of many wheels is is commonly called Gloffom comus.

How to pull a man above ground with a fingle hair.

```
88 Archimedes; or, Lib.I.
```

Jack,todraw him up from the ground, as will be evident from this following figure.

Cap.13. Mecbanical Pozbers. fly or ballance in comparifon to the breadth of its axis, to be as ro to one, and fo for the three other wheels in refpect of the nurs that belong unto thé; (though this difference be oftentimes leffe, as we may well allow it to be) withall fuppole the weight (or a man tyed in the place of it) to be a hundred pounds: I fay according to this fuppofition, it is evident that the power at the ballance, which fhall be equall to the weight, need be but as i to ioooo. For the firft axis is conceived to be but as the tenth part of its wheel, and therefore though the weight in ir felf be as roooo, yet unto a power that hath this advantage, it is but as 1000 , and therefore this thoufand unto the like power at the fecond wheel, will be but as 100, and this 100 at the third but as 10; and lafly, this ten at the ballance but as one. But the weight was before fuppofed to be 1o0, which to the firft wheel will be but 10 , to the fecond as one, to the third as a decimall,

90	Archimedes, or
	mall, or one tenth, to the fails as one hundreth part; fo that if the hair be but ftrong enough to lift $\begin{gathered}\text { sobos that } \\ \text { th }\end{gathered}$ one ten thoufandth part of a man, or (which is all one) one hundrech part of a pound, it may as well ferve by the help of this inftrument for the drawing of him up. And though there be not altogether fo great a difproportion betwixt the feverall parts of a Jack, (as in many perhaps there is not;) and though a man may be heavier then is here fuppofed, yet 'tis withall confiderable that the ftrength of a hair is able to bear much more then the hundreth part of a pound. Upon this ground Merfennus tels us out of Solomon de Cavet, that if there were an engine of 12 wheels, each of them with teeth, as alfo the axes or nuts that belong unto them, if the Diameter of thefe wheels were unto each axis, as a hundred to one: and if we fuppofe thefe wheels to be fo placed, that the teeth of the one might take hold of the axis that belongs unto the next, and charthe axis

9^{2}	Archimedes, or,
	pen any dore, together with divers the like inftruments in common ufe. Cap. XIV. Concerning the infinite frength of Wheels, Pulleys, fo Screws. That it is poßible by the multiplication of thefe, to pull up any oak by the roots with a bair, lift it up with a fraw, or blow it up with ones breath, or to perform the greateft labour with the leaft power.
	FRom what hath been before delivered concerning the nature of the Pulley, it is eafie to underftand, how this faculty alfo may be proportioned betwixt any weight, and any power, as being likewife of infinite Atrength. 'Tis reported of Archimedes, that with an engine of Pulleys, to which he applyed onely his left hand, he lifted up * 5000 bufhels of corn at once, and drew a hip with all its la-

Cap.14. Mechanical Powers.
ding upon dry land. This engine $Z e^{-}$ tzes calsTripatum, or Trijpaf fum, which fignifies only a threefold Pulley; But herein he doch evidently miftake, for 'tis not poffible that this alone fhould ferve for the motion of fo grear a weighs, becaufe fach an engine can but make a fubfextuple, or at moft a fubfepruple proportion betwixt the weight and power, which is much too little, to reconcile the ftrength of a man unto fo much heavineffe. Therefore Vbaldus doth more properly fyle it Polypaffon, or an inftrument of many Pulleys: How many, were eafie to find out, if we did exacly know the weight of thofe ancient meafures; fuppofing them to be the fame with our buthell in England, which contains 64 pintes or pounds, the whole would amount to 320000 pounds, half of which would be lighened by the help of one Pulley, three quarters by two Pulleys, and fo onward, according to this fubduple, fubquadruple, and fubfextuple proportion: So that if we conceive the ftrength
of the left hand to be equivalent unto 20 or 40 pounds, it is eafie to finde out how many Pulleys are required to inable ir for the motion of fo greas a weight.

Comment. in Gen.c.I. v.io.art.6.

Praf.ad Mecbath. Ariftotle.

Upon this ground Merjexmus tels us, that any little childe with an engine of an hundred double Pulleys, might eafily move this great globe of earth, though it were much heavier then it is. And in reference to this kind of engine (faith Monantholius) are we to underftand that affertion of Archimedes, (as he more immediately intended it) concerning the poffibility of moving the world.

The wedge was before demonftrated to be as a double Vectis or Leaver, and therefore it would be needleffe to explain particularly how this likewife may be contrived of infinite force.

The Screw is capable of multiplication, as well as any of the other faculties, and may perhiaps be more ferviccable for fuch great weights, then any of the reft. Archimedes his engine

Cap.14. Mechanical Powers. engine of greateft ftrength, called Chariftion, is by fome thoughe to confift of thele. Axes habebat cum infinitis cochleis. And that other engine of his called Helix (mentioned by ${ }^{*} A$ theneus) wherewith he lifted Hiero's grear fhip into the fea, without any other help, is mof likely to be framed of perpetuall fcrews, faith Rivaltus.)

Whence it may evidently appear, that each of thefe Mechanick faculties are of infinite power, and may be contrived proportionable unto any conceivable weight. And that no naturall ftrength is any way comparable unto thefe artificiall inventions.
'Tis reported of Samplon, that he he could carry the gates of a city upon his fhoulders, and that the ftrongeft bonds were unto him but as flax burnt with fire, and yet his hair being fhaved off, all his ftrength departed from him. We ${ }^{*}$ read of Milo, that he could carry an Oxe upon his back, and yet when he tried to tear an Oak afun-

Judg. 15.

* A.Gell. NoCt.Att. l.15.C. 16.

Archimedes; or,
Lib..
der that was fomewhat riven before, having drawn it to its utmoft, it fuddenly joined together again, catching his hands in the cleft, and fo ftrongly manackled him, that he became a prey to the wilde beafts.

But now by there Mechanicall contrivances, it were eafie to have made one of Samplons hairs that was fhaved off, to have been of more ftrength, thenall of them when they were on. By the help of thefe arts it is poffible (as I fhall demonftrate) for any man to lift up the greateft Oak by the roots with a ftraw, to pull it up with a hair, or to blow it up with his breath.

Suppofe the roots of an Oak to extend a thoufand foot fquare, (which is almoft a quarter of a mile) and forty foot deep, each cubicall foot being a hundred pound weight; which though it be much bey ond the exterfion of any tree, or the weight of earth, the compaffe of the roots in the ground (according to common opinion) not extending further then the branches of it in the air, and the depth

Cap.14. MecianicalPowers.
depth of it not aboveten foot, beyond which the greateft rain doth not penetrate(faith * Seneca.) Ego vinearum diligens foffor affirmo nullam pluvian effe tam magnam, que terram ultra decem pedes in altitudinem madefaciat. And becaufe the root mult receive its nourifhment from the help of fhowers, therefore it is probable that it doth not goe below them. So that (I fay) though the proportions fuppofed doe much exceed the reall truth, yet it is confiderable that fome great overplus mult be allowed for that labour which there will be in the forcible divulfion or feparation of the parts of the earth which are continued.

According to this fuppofition, the work of forcing up the Oak by the roots, will be equivalent to the lifting up of 4000000000 pound weight, which by the advantage of fuch an engine, as is here defcribed, may be eafily performed with the leaft conceivable power.

Cap.14. Mechanicall Poovers.

The whole force of this engine doth confift in two double Pulleys, twelve wheels, and a fail. One of there Pulleys at the botrome will diminifh half of the weight, fo that it thall be but as 2000000000 , and the other Pulley will abate ${ }^{5}$ sthree quarters of it : fo that it fhall be but as 1000000000 . And becaufe the beginning of the fring being fafted unto the lower Pulley, makes the power to be in a fubquintuple proportion unto the weight, therefore a power that thall be as ro00000000, that is, a fubquadruple, will be fo much ftronger then the weight, and confequently able to move it. Now fuppofe the breadth of all the axes and nuts, to be unto the Diameters of the wheel as ten to one; and it will then be evident, that to a power at the firt wheel, the weight is but as rooooo000. Tothe fecond as 10000000. Tothethird as 1000000. To the fourth as 100000 . To the fifth as 10000 . Tothe fixth as 1000 . To the feventh as ioo. To the eighth H_{2}

100	Archimedes; or, Lib.l..
	as 10. To the ninth as I. To the tenth as ${ }_{5=5}^{7}$, one decimall. To the ele- And to the fails yet leffe. So that if the ftrength of the Araw, or hair, or breath, be but equall to the weight of one thoufandth part of a pound, it may be of fufficient force to pull up the Oak. If in this engine we fuppofe the difproportion betwixt the wheeles and nuts, to be as a hundred to one, then it is very evident that the fame Arength of breath, or a hair, or a ftraw, would be ableto move the whole world, as will be eafily found by calculation. Let this great globe of fea and land bee imagined (as before) to weigh fo many hundred pounds as it contains cubicall feet; namely, 2400000000000000000000000 pounds. This will bee to the firt Pulley, 1200000000000000000000000 . To the fecond leffe thé 600000000000000000000000 . But for more eafie and convenient reckoning, let it be fuppofed to be fomewhat more,viz. 100000000000000000000000 This

Cap. 14. Mechanicall Powers.
 This to the firt wheel will be but as

 10000000000000000000000.To the fecond as 100000000000000000000 . To the third as 1000000000000000000.
Tothe fourth as 10000000000000000.
To the fifth I 0000000000000 .
To the fixth 1000000000000.
To the feventh 10000000000 .
To the eighth 100000000 .
Tothe ninth . 1000000.
To the tenth $\quad 10000$.
To the eleventh 100.
To the twelfth .. I.
To the fails as ${ }^{\frac{1}{8} \% \%}$.
So that a power which is much leffe then the hundredth part of a pound will bee able to move the world.

It were needleffe to fet down any particular explication, how fuch Mechanicall ftrength may be applyed unto all the kinds of locall motion ; fince this, in it felf is fo facill and obvious, that every ordinary artificer doth fufficiently undertand it.

The fpecies of locall violent motion are by Arifootle reckoned to bee thele four:

$$
\mathrm{H}_{3} \quad \text { Pulfio. }
$$

Cap.15. Mechanical Powers.

103

$\left\{\begin{array}{l}\text { Slowneffe, } \\ \text { and } \\ \text { Swifneffe. }\end{array}\right.$
Without the right underftanding of which, a man thall be expofed to many abfurd miftakes, in arrempring of thofe things, which are either in themfelves impoffible, or elfe not to be performed with fuch means as are applyed unto them. I may fafely affirm, that many, if not moft miftakes in thefe Mechanicall defigns, doe arife from a mif-apprehenfion of that difference, which there will be betwixt the flowneffe or fwiftneffe of the weight and power, in comparifon to the proportion of their feverall ftrengths.

Hence it is, that fo many engines invented for mines and water-works doe fooften fail in the performance of that for which they were intended, becaufethe artificers many times doe forget to allow fo much time for the working of their engine, as may be proportionable to the difference betwixt the weight and power that
\qquad

104	Archimedes; or, Lib.i
	belong unto them: whereas he that rightly underftands the grounds of this art, may as eafily find out the difference of fpace and time, required to the motion of the weight and power, as he may their different ftrengths; and not only tell how any power may move any weight, but alfo in what a fpace of time it may move it any face or diftance. If it were poffible to contrive fuch an invention, whereby any conceivable weight may be moved by any conceivable power, both with the fame quickneffe and fpeed (as it is in thofe things which are immediately ftirred by the hand, without the help of any other inftrument) the works of nature would be then too much fubjected to the power of art : and men might be thereby incouraged (with the builders of Babell, or the rebell Gyants) to fuch bold defignes as would not become a created being. And therefore the wifdome of providence hath fo confined thefe humane arts, that what any invention

Cap.15. Mechanical Powbers.

hath in the ftrength of its motion, is abated in the lowne β of it: and what it bath in the extraordinary quickne β of its motion, mult be allowed for in the grear ftrength that is required unto it.

For it is to be obferved as a generall rule, that the fpace of time or place, in which the weight is moved, in comparifon to that, in which the power doth move, is in the fame proportion as they themfelvcs are unto one another.

So that if there be any great difference betwixt the ftrength of the weight and the power, the fame kind of differences will there be in the fpaces of their motion.
Toilluftrate this by an example :

Mechanicall Powers. CAP.15. 107

both thefe arches have the fame proportion unto one another, as there is betwixt the weight and the power, or (which is all one) as there is betwixt their feverall diftances from the fulciment. Suppofe $A G$, unto $A B$, to be as one unto four, it may then be evident that $F G$, or $D E$, will be in the fame proportion unto $B C$. For as any two Semidiameters are unto one another, fo are the feverall circumferences defcribed by them, as alfo any proportionall parts of the fame circumferences.

And as the weight and power doe thus differ in the faces of their motions, fo likewife in the flowneffe of it; the one moving the whole difance $B C$, in the fame time, wherein the other peffes onely $G F$. So that the motion of the power from B to C, is fourtimes fwifter then that of the weight from G to F. And thus will it be, if we fuppofe the difpro* portions to be far greater, whether or no we conceive it, either by a contimuation of the fame inftrument and fa-

108	Lrchimedes; or, LiB. I.
faculty, as in the former example, or	
by a multiplication of divers, as in Pul-	
leys, Wheels, \&c. By how much the	
power is in it felfe leffe then the	
weight, by fo much will the motion	
of the weight be flower, then that	
of the power.	
To this purpole I fhall briefly	
touch at one of the Diagrams expref-	
fed before in the twelfth Chapter,	
concerning the multiplication of Lea--	
vers.	
st	

fed above one foot ; but now the fecond Leaver at its utmof could move but a tenth part of the firf, and the third Leaver but a tenth part of the fecond, and fo of the reft. So that the laft Leaver F, being depreffed, will paffe a pace 100000 greater, and by a motion, 100000 Iwifter then the weight at A.

Thus are we to conceive of all the other faculties, wherein there is conftantly the fame difproportió betwixt the weight and power, in refpect of the fpaces and flowneffe of their motions, as there is betwixt their feverall gravities. If the power be unto the weight, but as one unto a hundred, then the fpace through which the weight moves, will be a hundred times leffe, and confequently the motion of the weight a hundred cimes flower then that of the power.

Sothat it is but a vain and impoffible fancy for any one to think that he can move a great weight with a litle power in a litle fpace; but in all thefe Mechanicall attempts, that advantage

CAP.16. Mechanical Powers.
different motion, by the diffance from which, we may judge of the proportions on either fide, whether flowneffe or fwiftneffe. Now becaufe there is not any fuch naturall medium, which may be abfolurely fyled an indifferent motion, but that the fwiftneffe and flowneffe of every thing, is fill proportioned either to the quantity of bodies, in which they are, or fome other particular end for which they are defigned; therefore we muft take liberty to fuppofe fuch a motion, and this we may conceive to be about 1000 paces, or a mile in an hower.

The ftarry heaven, or 8-h fphere is thought to move 42398437 miles in the fame fpace: So that if it may be demonftrated that it is poffible to contrive fuch a motion, which going on in a conftant direct courfe, fhall paffe but the 42398437 part of a mile in an hower, it will then be evident, that an artificiall motion may bee flow, in the fame proportion as the heavens are fwifr.

Now

Now it was before manifefted that according to the difference betwixt the weighe and power, fo will the difference be betwixt the flowneffe or fwiftneffe of their motions; whence it will follow, that in fuch an engine, wherein the weight thall bee 42398437 pounds, and the power that doth equiponderate it, but the $423 y 8437$ part of a pound (which is eafie to contrive) in this engine the power being fuppofed to move with fuch a fwiftneffe, as may be anfwerable to a mile an hower, the weight will paffe but the 42398437 pare of a mile in the fame fpace, and fo confequently will be proportionably flow unto the fwiftneffe of the heavens.

It is relaced by our Country-man

Preface to Euclid. I. Dee, that he and Cardan being both together in their travels, they did fee an inftrument which was ar firft fold for 20 talents of gold, wherein there was one wheel, which conftantly moving round amongft the reft, did not finifh one revolution under the fpace of feven thoufand years.

CAP. 16. Mechanical Povers.
But if we farther confider fuch an inftrument of wheels as was mentioned before in the 14 chapter, with which the whole world might bee eafily moved, we fhall then find that the motion of the weight by that; muft be much more flow, then the heavens are fwift. For though wee fuppofe (faith Sterinus) the handle of fuch an engine with 12 wheels to be turned abour 4000 times in an hower, (which is as ofren as a manspulle doth beat) yet in ten years fpace the weight by this would not be moved
 one foot; which is nothing near fo much as a hairs breadth. And it could not paffe an inch in 1000000 years, faith Merfennus.

The eruch of which we may more eafily conceive, if we confider the frame and manner of this 12 wheeld engine. Suppofe that in each axis or nut, there were ten teeth, and on each wheel a thoufand : then the fails of this engine muft beturned a hundred times, before the firft wheel, (recko1 ning
ning downward) could bee moved round once, and ten thoufand times before the fecond wheel can finith one revolution, and fo through the 12 wheels,according to this multiplyed proportion.
So that befides the wonder wht there is in the force of thefeMechanical motions, the extream flowneffe of them is no leffe admirable. If a man confider that a body fhould remaine in fuch a conftant direct motion, that there could not bee one minute of time, wherein it did not rid tome fpace, and paffe on further, and yet that this body in many years together, fhould not move fo far as a hairs breadth.

Which notwithftanding may evidently appear from the former inftance. For fince it is a naturall principle, that shere can be no penetration of bodies, and fince it is fuppofed, that each of the parts in this engine doe touch one another in their fuperficies, therefore it muft neceffarily follow, that the weight does begin

Cap.16. Mechanicall Poopers.

and continue to move with the power: and (however it is infenfible) yet it is certain there muft be fuch a motion fo extreamly flow, as is here fpecified. So full is this art of rare and incredible fubtilties.

I know it is the affertion of Cardan, Motus valde tardi, necef]ario quietes babent intermedias. Extream flow motions have neceffarily fome insermediate ftops and refts: But this is onely faid, not proved, and he fpeaks it from fenfible experiments, which in this cafe are fallible. Our fenfes being very incompetent judges of the feverall proportions, whether greatneffe or listleneffe, flowneiffe or fwifneffe, which there may bee amonget things in nature. For fought we know, there may be fome orgamicall bodies, as much leffe then ours, as the earth is bigger. We fee what ftrange difcoveries of extream minute bodies, (as lice, wheal-worms, mites, and the like) are made by the MicroCoope, wherein their feverall parts (which are altogether invifible to the I 2 bare

Devarietate rerum
l.9.c. 47.

116	Archimedes; or,
	bare eye) will diftinctly appear: and perhaps there may be other infects that live upon them as they doe upon us. 'Tis certain that our fenfes are extreamly difproportioned for comprehending the whole compaffe and latitude of things. And becaufethere may be fuch difference in the motion as vvell as in the magnitude of bodies; therefore, though fuch extream flowneffe may feem altogether impoffible to fenfe and common apprehenfion, yet this can be no fufficient argument againft the reality of ir.
	Cap. XVII. of swiftneffe: bow it may be increafed to any kind of proportion. Concern ing the great force of Archimedes bis Engines. of the Ballifa.
	BY shat which hath been already explained concerning the flownefs of motion, we may the better underftand the nature of fwiftneffe, both of them (as is the nature of oppofites

Cap.17. Mechanicall Powers.
fites) being produced by contrary caufes. As the greatneffe of the weight in refpect of the power, and the great diftance of the power from the fulciment, in comparifon to that of the weight, does caufe a flow motion: So the greatneffe of the power above the vveight, and the greater diftance of the vveight from the center, in comparifon to that of the power does caufe a fwift motion. And as it is poffible to contrive a motion unto any kind of flowneffe, by finding out an anfwerable difproportion betwixt the weight and power: fo likewife unto any kind of fwifneffe. For fo much as the weight does exceed the power, by to much will the motion of the weight be flower, and fo much as the power does exceed the weight, by fo much vvill the motion of the weight be fwifter.

four times fwifter then the power. And according as the power does exceed the vveight in any greater difproportion, fo will the fwiftneffe of the weight be augmented.

Hence may vee conceive the reafon of that great force vwhich there is in Slings, vvhich have fo much a greater fwifteneffe, then a ftone thrown from the hand, by how much the end of the Sling is farther off from the fhoulder-joynt, vvhich is the center of motion. The facred biftory concerning Davids victory over Goliah, may fufficiently evidence the force of thefe. Vegetius relates that it vvas ufuall this vvay to ftrike a man dead, \& beat the foul out of his body, vvithout fo much as breaking his armour or fetching blood. Membris integris lethale tamen vulnus important, \& f $\delta-$ ne invidia fanguinis, boftis lapidis ictu intereat.
In the ufe of thefe, many of the Ancients have been of very exquifite and admirable skill. We read of feven hundred Benjamites left. handed, that could I 4 ling
120 Archimedes; or, Libil

โँगु 7 ชี Búdतe!". Diodor.Sicul. Biblioth. 1.5 .
L. Floirus Hift.6.3. cap. 8.
10: Boemus Aubanus de moribus
gentium
l.3.c. 26.
fling a ftome at a bairs breadtb, and not miffe. And there is the like ftoried of a whole Nation amongft the Indians, vvho from their excellency in this art were ftyled Baleares. They vvere fo fride in teaching this art unto their young ones: Vt cibum puer à matre non accipit, niji quem ipfa monftrante percufit, That the mother vvould not give any mear to her child, till (being fet at fome diftance) he could hit it with flinging.

For the farther illuftration of this fubject, concerning the fwiftneffe of motion, I hall briefly fpecifie fome particulars concerning the engines of vvar ufed by the Ancients. Amongft thefe, the moft famous and admirable vvere thofe invented by Archimedes, by which he did perform fuch ftrange exploits, as (vvere they not
${ }^{2}$ Hiftor.l. 4
${ }^{6}$ Hiftor.
Cbilias 2. biftor. 35.
${ }^{c}$ Li.2.e.3.
${ }^{d}$ Marcel-
lues.
Hiflor.
l.24. related by fo many and fuch judicious Authours) vvould farce feeme credible even to thefe more learned ages. The acts of that famous Engineer, are largely fet down by a Polybius, ь Tzetzes, , Proclus, ${ }^{\text {d Plutarch }}$, Li$v y$,
Cap.17. Mechanical Towers. of vvhom alone, vve may have fufficient evidence for the truch of thofe relations. For befides thar he is an Authour noted to be very grave and ferious in his difcourfe; and does folemnly promife in one place that he will relate nothing, but what either he himfelf was an eye-witneffe of, or elfe what hee had received from thofe that were fo; I fay, befides all this, it is confiderable, that he himfelf was born not above thirty years after the fiege of Syracufe. And afterwards having occafion to tarry fome weeks in that City, when he travelled vvith Scipio, he might there perhaps fee thofe engines himfelf, or at leaft take his information from luch as were cye-vvitnefles of their force: So that there can bee no colourable prerence for any one to diftruft the particulars related of them.

In brief, the fum of their reports is this : When the Romane forces under the conduct of Marcellus, had laid fiege unto that famous City, (of which

121

Hiftor.l.4. juxtaini= tium.

122

cal: Rhod: Ant:lect:
l.2.c.16.

Plateus Teftudo.
which, both by their former fucceffes, and their prefent ftrength, they could not chufe but promife themfelves a fpeedy victory;) yet the arts of this one Mathematician, notwithftanding all their policies and refolutions, did fil beat them back to their great difadvantage. Whether they were neer the wall or farther from it, they were ftill expofed to the force

 of thofe ftones and arrows, which he fhot againft them, was he ftyled exgrivxep, or Briareus. Thofe defenfive engines that were made by the Romanes in the form of Pent-houfes for to cover the affailants from the weapons of the befieged, there would he prefently batter in pieces vvith great ftones and blocks. Thofe high towers erected in fome of the fhips, out of which the Romanes might more conveniently fight with the defendants on the wall, thefealfo were

124 Archimedes; or, Lib.i.

wards amongft the Romanes and other Nations. Thefe were commoniy divided into two forts: ftyled

$$
\left\{\begin{array}{l}
\text { Balliffe. } \\
\text { Catapulte. }
\end{array}\right.
$$

Vid. Nawdeum de Stud.MiLitar.l.z. \dagger बाग Tr By, 入ौe, called alfo ג. o'r $^{\prime}$ onos. $\pi \in T$ ро́'ßonos. Fundi-balus.Pe- ${ }^{4}$ traria.

Lib. 3.

Both vwhich names are fometimes ufed promifcuoufly ; but according to their propriety \dagger Ballista does fignifie an engine for the fhooting of fones, and Catapulta for darts or arrows.

The former of thefe was fitted either to carry divers leffer ftones, or elfe one greateft one. Some of thele engines made for grear ftones, have been proportioned to fo vaft and immenfe a weight, as may feem almoft incredible : which occafioned that in Lucan,

At \int axum quoties ingenti verberisitta
Excutitur, qualis rupes qua vertice mont is AbScidit impulf us ventor \vec{n} adjuta vetuftas, Frangit cunctarués;nec tantü corpora preffa Exanimat, totos cü fanguine diffipat artus.
With thefe, they could eafily baster down the vvals and Towers of any Fort: So ovid.

2uam

Cap.17. Mechanical Powers.

> 2uam grave balijfte marnia pullat ontis.

And Statiuss--- 2 no turbine bellica quon-
dam
Librati Saliunt portarum in clayfera molapes.
The fones that were caft from thefe, were of any form, Enormes of repulchrales, Milfones or Tombe ftones. Sometimes for the farther annoyance and terror of any befieged place, they would by thefe throw intoit dead bodies, either of men or horfes, and fometimes only parts of them as mens heads.

Athencus mentions one of thefe Ballifte that was proportioned unto a flone of three talents vveight, each talent being 120 poutuls (faith Vi truvius) fo that the vvhole vvill amount to 360 pounds. But it is foried of Archimedes, that he caft a fone into one of Marcellus his fhips, which was found to weigh ten talents. There is fome difference amongf:** Authors, concerning what kind of talent this fhould be underftood, but it is certain that

Lipfiuspoliorcet.l.3. Dial. 3.

DeipnoSoph.t.5.

Arcbit.l. 10.c.ult. $\lambda i{ }^{\prime} \theta_{0 v}$ d:-หatá入д:tor.
Plut.Marcell.

* Dav.Ri= valtus Cömen. in Ar= shim. Oper. Ext.

126

 Archimedes; or, Lib. 1Naudeus de ftudio. Milit.l.2.
that in Plutarchs time, (from whō we have this relatiō) one talêt did amount to iz opounds (raithSuidas:)according to vvhich account, the ftone it felf was of no lefferhen twelve hundred pound weight. A weapon (one would think) big enough for thofe rebell Gyants that fought againtt the gods. Now the greateft Cannon in ufe, does not carry above 64 pound vveight, which is tar fhort of the ftrengeh in thefe Mathemaxicall contrivances. Amongft the Turks indeed, there have been fornetimes ufed fuch powder infruments, as may equall the force of thofe invented by Archimedes.Gab. Naildcuis tels us of one bullet fhot from them at the fiege of Conftantinople, which was of above 1200 pound vveight; This he affirms from the relation of an Archbifhop, who was then prefent and did fee ir; the piece could not be drawn by leffe then a hundred and fifty yoak of oxen, vvhich might almof have ferved to draw away the Town it felfe. But though there hath been perhaps fome

Cap.17. Mecbanical Powers.
one or two Cannons of fuch a prodigious magnitude, yet it is certain that the biggef in common ufe, does come far fhort of that ftrength, which was ordinarily inthefe Mechanical engins.

There are divers figures of there Ballifte, fet out by Vegetius, Lipfius, and others; but being without any explication, it is not very facil to difcover in what their forces did confift.

I have here expreffed one of them moft eafie to be apprehended, from the underftanding of which, you may the better gheffe at the nature of the reft:

See Rob: Valteurius dere Militol.10. C:

That

Cap.18. Mecianical Powers.
ning of the axis and fpokes $B C$. The ftone or bullet to be difcharged being in a kind of fling at D, which when the greater weight A, defcends, will be violently whirled upwards, till that end of the fling at E, coming to the top will flye off, and difcharge the fone as the skilfull Artift fhould direct it.

Cap. XVIII.

Concerning the Catapulte, or Engines for Arrows.

THe other kind of engine was called Catapulta, ánò s' π tinnus, which fignifies a fpear or dart, becaufe it was ufed for the fhooting of fuch weapons: fome of thefe were proportioned unto fpears of twelve cubits long; they did carry with fo great a force, ut interdum nemio ardore (cintillant, (faith Ammianus) that the weapons difcharged from them were fometimes (if you can beleeve it) fet on fire by the fwiftneffe of their motion.

K
The

In Greck みetatrin-
THS.
Athencus.
Deipnof. $l .5$.

Lib. 23 .
Lipfius Po: liorcet.l.3. Dial.z.

Diod.Sicul. Biblioth.
l. 14.

Sardus de Invert. Rerum.l.2.

2 Chron. 26.15 .

Sir Fran: Bacon Nat. Hiff.Exp. 704.

The firt invention of thefe is commonly afcribed to Dionyfus the yonger, who is faid to have made them amongt his other preparations a. gainft Carthage. But we have good reafon to think them of more ancient ufe, becaufe we read in Scripure that V zziah made in ferufalem engines invented by cunning men to froot arrows and great ftones withall, though: it is likely thefe inventions vvere: much bettered by the experience of: after ages.

The ufuall form of thefe Catapul-. te, was much after the manner of great Bows placed on Carriages, and wound up by the frength of feverall perlons. And from that great force which we find in leffer Bows, we may eafily gheffe at the greater power of thefe other engines. 'Tis related of the Turkifh Bow, that it can ftrike an arrow through a peece: of ftet or braffe two inches thick, andbeing headed onely with wood ir pierces Timber of eight inches. Which though it may feem incredible $_{9}$

Cap.18. Mechanicall Powers.
ble, yet it is attefted by the experience of divers unqueftionable witneffes: Barclay in his Icon animorum, a man of fufficiens credit, affirms that he was an eye-witneffe, how one of thefe Bows with a litele arrow did pierce through a piece of fteel three fingers thick. And yet thefe Bows being fomewhat like the long Bows in ule amongft us, were bent only by a mans immediate ftrength, without the help of any bender or rack that are ufed to others.

Some Turkifh Bows are of that ftrength, as to pierce a plank of fixe inches in thickneffe, (I fpeak what I have feen) faith M. fo: Greaves in his pyramodographia. How much greater force then may we conceive to be impreffed by the Catapulte.?

There were fomerimes framed for the difcharging of two or three arrows together, fo that each of them might bee directed unto a feverall aim. But it were as eafie to contrive the after the like manner for the carriage of ewenty arrows, or more, as in this figure.

K 2 Both

Cap.18. Mechanicall Towers.
ftyled by the name of Helepolis.
He that would be informed in the nature of Bows, let him confule MerSennus De Balliftica do Acontifmologia, where there are divers fubule inquiries and demonftrations, concerning the ftrength required to the bending of them to any diftance. The force they have in the difcharge according to feverall bents, the ftrength required to be in the ftring of them, the feverall proportions of fwifmeffe and diftance in an arrow fhot vertically, or horizontally, or traníverfally.

Thofe ftrange effects of the Turkifh Bow (mentioned before)fo much exceeding the force of others, which yet require far greater ftrength for the bending of them, may probably be afcribed either to the naturall caufe of attraction by fimilitude of fub. fance (as the Lord Bacon conjectures.) For in thefe experiments the head of the arrow fhould be of the fame fubftance (whether fteel or wood) with that which it pierces: Or elfe to that juft proportion betwixt the K 3 weight

Cap.19. Mechanical Powers.

ent inventions, it may fufficiendly appear from thofe many credible reations mentioned before ; to which may be added char in foofepbus, which he fets down from his own eye-fighr, being himfelf a chief Captain at the fiege of \mathcal{F} otapata, where thefe events happened. He tels us that befides the multitude of perfons, who were nain by thefe Romane Engines, being not able to avoid their force, by realon they were placed fo far off, and out of fight; Befides this, they didalfo carry fuch great ftones, with fogreat a violence, that they did therewith batter down their wals and Towers. A grear bellied woman walking a. bout the City in the day time, had her child fruck our of her wome, and carried half a furlong from her. A foldier ftanding by his Captain fofephus, on the wall, had his head fruck off by another fone fent from thefe Romane Engines, and his brains carried three furlongs off.

To this parpofe Cardan relares out of Ammianus Marcellinus. Tanto

De variet. l.12.C.58.

Debello
Iudaico.l. 3.c.9.

136 Archimedes; or, Lib.I

impetw fertur lapis ut uno vifo lapide quamvis intacti barbari fuerint ab eo, deffiterunt à pugnâ o abierunt. Many forain people being fo amazed at the flrange force of thefe Engines, that they durft not conteft with thofe who were mafters of fuch inventions. 'Tis frequently afferted, that bullets have been melted in the air, by that extremity of violent motion impreft from thefe flings.

Fundáque contorto tran/verberat aëra plumbo,
Et mediis liquide glandes in nubibus errant.
So Lucan, fpeaking of the fame Engines.

Inde faces ơ Jaxa volant, fpatioque folute
Aeris ơ calida liquefacta pondere glandes.
Which relations, though they may feem fomewhat poeticall and improbable, yet Ariftotle himfelf (De calo lib.2.c.7.) doth fuppofe chem as unqueftionable. From whence it may be inferred, that the force of thefe Engines

Cap.19. Mechanical Powers.
gines does rather exceed then come fhort of our Gun-powder inventions.

Add to this that opinion of a learned man (which I cited before) that Archimedes in the fiege of Syracufe, did more milchief with his Engines, then could have been wrought by any Cannons, had they been then in ufe.

In this perhaps there may be fome difadvantage, becaufe thefe Mathematicall Engines cannot be fo eafily and fpeedily wound up, and fo certainly levelled as the other may.
2. As for the price or charges of both thefe, it may be confidered under three particulars:
r. Their making.
2. Their carriage or conveyance.
3. Their charge and difcharging.

In all which refpects, the Cannons now in ufe, are of much greater coft then thefe other inventions.
1.The making or price of thefe Gunpowder inftruments is extreamly expenfive, as may be eafily judged by the weight of their materials. A whole Cannon

Sir Walt. Raleigh. Hift.l.5. c.3. 516. See Lipfius de militizúá Romanâ. i.5.

13^{8}	Archimedes; or, Lib. 1
	Cannó weighing commonly 80001 . a half Cannon 5000,aCulverin 4500 , a Demiculverin 3000; which whether it be in iron or braffe, muft needs be very coftly, only for the matter of them; befides the farther charges required for the form and making of them, which in the whole muft needs amount to feverall hundred pounds. Whereas rhefe Mathematicall inventions confitting chiefly of Timber, and cords, may be much more cheaply made; The feverall degrees of them which fhall anfwer in proportion to the ftrength of thofe other, being at the leaft ten times cheaper; that is, ten Engines that thall be of equal force either to a Cannon or Demicannon, Culverin or Demiculverin, may be framed at the fame price that one of thefe will amount to: So that in this refpect there is a great inequality. 2. As for their carriage or conveyance; a whole Cannon does require at the leaft 90 men, or 16 horfes, for the draught ofit; a half Cannon 56

Mechanicall Powers. Cap.19.
men, or 9 horfes; a Culverin 50 men , or 8 horfes; a Demiculverin 36 men, or 7 horfes; Suppofing the way to be hard and plain, in which notwithftanding the motion will be very flow. But if the paflage prove rifing and feep, or rotten and dirty, then they will require a much greater Arength and charge for the conveyance of them. Whereas thefe other inventions are in themfelves more light (if there be occalion for the draught of them) being eafily taken afunder into feverall parts. And befides, theirmaterials are to be found every where, fo that they need not be carried up and down at all, but may be eafily made in the place where they are to be ufed.
3. The materials required to the charging of thefe Gun-powder inftruments, are very coftly. A whole Cannon requiring for every charge 40 pound of powder, and a bullet of 64 pounds; a half Cannon 18 pound of powder, and a bullet of 24 pounds; a Culverin 16 pounds of powder, and

140	Archimedes; or, Lib.i.
	a bullet of 19 pounds; a Demi-culverin 9 pounds of powder, and a bullet of 12 pounds: whereas thofe other Engines may be charged only with fones, or (which may ferve for terrour) with dead bodies, or any fuch materials as every place willafford without any coft. So then, put all thefe together: If it be fo that thofe ancient inventions did not come fhort of thefe other in regard of force, and if they doe fo much excell thein in divers other refpects; It fhould feem then, that they are much more commodious then thefe later inventions, and fhould be preferred before them. But this inquiry cannot be fully determined without particular experience of both.
	Cap.

Cap.20. Mechanical Powers. Cap. XX.
That it is poßible to contrive fuch an artificiall motion, as may be equally Jwift with the Suppofed motion of the beavens.

For the conclufion of this Difcourfe, I fhall briefly examine (as before concerning flowneffe) whether it be poffible to' contrive fuch an artificiall motion, as may be equall unto the fuppofed iwiftneffe of the heavens. This queftion hath been formerly propofed and anfwered by Cardan, where he applies it unto the fwiftneffe of the moons orb; but that orb being the loweft of all, and confequently of a dull and fluggih motion, in comparifon to the reft; therefore it will perhaps be more convenient to underftand the queftion concerning the eight fphere or ftarry heaven.
For the true refolution of this, it fhould be firf oblerved, that a materiall fubftance is altogether incapable

DeVariet. Rerum l.9. c.47.

142
The earth a planet, prop.9.

Archimedes; or, LIB.I
ble of fogreat a celerity, as is ufually alcribed to the celeftiall orbs. (as I have proved elfewhere) And therefore the quare is not to be underftood of any reall and experimentall, but only notionall, and Geomerrical contrivance.

Now that the fwiftneffe of motion may bethus increafed, according to any conceivable proportion, will be manifeft from what hath been formerly delivered, concerning the grounds and nature of flowneffe and fwiftrieffe. For according as we fhall fuppofe the power to exceed the weighr: fo may the motion of the weight be fwifter then that of the power.

But to anfwer more particularly: Let us imagine every wheel in this following figure to have a hundred teeth in it, and every nut ten :

Cap. 20.	Mechanical Powers.	143

It may then bee evident; that one revolution of the firt wheel, will turn the nut, and confequently the fecond wheel on the fame axis tentimes, the third

Cap.1. The fecond Book.

$\mathcal{D} \mathcal{D} A L V S_{,}$ O R,

MECHANICALL Motions.

Chap. I.
The divers kinds of Automata, or Selfmovers. of Mils, and the contrivance of feverall motions by rarefied air. A brief digrefiü concerning wind-guns. Nan Mongt the variety of artifi-
ciall motions, thofe are of moft ufe and pleafure, in which, by the application of fome continued ftrength, there is beftowed a regular and lafting motion.
 movers: which name in its utmoft latitude, is fometimes afcribed unto thofe motions, that are contrived from the ftrength of living creazures, as Chariots, Carts, \&c. But in its frietneffe \& propriety, it is onely appliable unto fuch inventions, wherein the motio is caufed either by fomthing that belongs unto its own frame, or

146	Dedalus; or, Lib. 2.
De invent. Rerum, $l_{\text {l. }}$. c. 18. Nat.Hifl.l. 8.6.10.	elfe by fome external inanimate agent. ftinguifhable into two forts: I. Thofe that are moved by fomething which is extrinfecall unto their own frame, as Mils by water or wind. 2. Thofe that receive their motion from fomething that does belong to the frame it felf, as clocks, watches, by weights, fprings, or the like. Of both which forts, there have been many excellent inventions: In the recitall of them, I fhall infitt chiefly on fuch as are moft eminent for their rarity and fubtilty. Amongtt the dutopara that receive their motion frob fome externall agent, thofe of more common ule are Mils. And firft, the Water-mils, which are thought to be beforethe other, though neither the firft Author, nor fo much as the time wherein they were invented is fully known. And therefore Polydor Virgil refers them amongft other fatherleffe inventions. Pliny indeed doth mention them, as being commonly ufed in his time : and yet others

Cap.I. Mechanicall Motions.
others affirm, that Bellifarius in the

However'tis certain, that this invention hath much abridged and advantaged the labours of men, who were before condemned unto this flavery, as now unto the Galleys. And as the force of waters hath been ufefull for this, fo likewife may it be contrived to divers other purpofes. Herein doth the skill of an artificer chiefly confift, in the application of thefe common motions unto various and beneficiall ends, making them ferviceable not only for the grinding of corn, bur for the preparing of iron or other oare, the making of paper, the elevating of water of the like.

To this purpofe allo are the Mils that are driven by wind, which are fo much more convenient then the other, by how much their fituations L_{2} may.

De Repert. Tit.22.

Ad Pittriทนขึ.

may be more eafie and common. The motions of thefe may likewife be accommodated to as various ufes as the other, there being fcarce any labour, to the performance of which, an ingenious artificer cannot apply them. To the fawing of Timber, the plowing of land, or any other the like fervice, which cannot be difpatched the ordinary way, withour much toil and tedioufneffe. And it is a wonderfull thing to confider, how much mens labours might be eafed and contracted in fundry particulars, if fuch as were well skilled in the prinples and practifes of the fe Mechanicall experiments, would but thoroughly apply their ftudies unto the inlargement of fuch inventions.
There are fome other motions by wind or air, which (though they are not fo common as the other, yet) may prove of excellent curiofity, and fingular ufe. Such was that muficall

Maicell. Vranhbein. Epift.ad lob.Ernet Atwn.

Cap.1. Mechanicall Motions.
pleafant harmony, but being removed into the fhade, would prefently become filent. The reafon of it was this: the warmth of the fun,working upon fome moifture within it, and rarifying the inward air unto fo great an extenfion, that it muft needs feek for vent or iffue, did therby give feverall motions unto the inftrument.

Somewhat of this nature are the Eolipiles, which are concave veffels, confifting of fome fuch materiall as may indure the fire, having a fmall hole, at which they are filled with water, and out of which (when the

Like that ftatue of
Meminon in Egypt, which makes a ftrange noile when ever the fun begins to fhine upon i.. Tacit. Anal.2. Strabo affirms that he had both feen and heard it. Veffels are heated) the air doth iffue forth with a ftrong and lafting violence. Thefe are frequently ufed for the exciting and contracting of heas in the melting of glaffes or metals. They may alfo be contrived to be ferviceable for fundry other pleafant ufes, as for the moving of fails in a chimney corner, the motion of which fails may be applied to the turning of a fpit, or the like.

But there is a better invention to

$$
\mathrm{L}_{3} \text { this }
$$

1501 Dedalus; or, Lib. 2

De Variets Rer花l.120 C.58.
this purpofe mentioned in Cardan, whereby a fpit may be turned (with out the help of weights) by the motion of the air that afcends the Chimney; and ir may be ufefull for the roafting of many or great joints: for as the fire mult be increafed according to the quantity of meat, fo the force of the inftrument will be augmented proportionably to the fire. In which contrivance there are thefe conveniences above the Jacks of ordinary ufe.
r. It makes little or no noife in the motion.
2. It needs no winding up, but will conftantly move of it felf, while there is any fire to rarifie the air.
3. It is much cheaper then the other inftruments that are commonly ufed to this purpofe. There being required unto it onely a paire of fails, which muft bee placed in that part of the chimnie where it begins to be fraightned, and one wheel to the axis of which the fpit line mult be faftned, according to this following Diagram.

The

The motion of thefe fails may likewife be ferviceable for fundry other purpofes, befides the turning of a fpit; for the chiming of bels or other muficall devices; and there cannot be any more pleafant contrivance for L. 4 con-

152

 Dedalus; or, Lib.2. continuall \& cheap mufick. It may be ufefull alfo for the reeling of yarn, the rocking of a cradle, with divers the like domeftick occafions. For (as was faid before) any conftant motion being given, it is eafie for an ingenious artificer to apply it unto various fervices.Thefe fails will always move borh day and night, if there is but any fire under them, and fometimes though there bee none. For if the air without be much colder then that within the room, then muft this which is more warm and rarified, naturally afcend through the chimney, to give place unto the more condenfed and heavy, which does ufually blow in at every chink or cranny, as experience thews.

Unto this kind of motion may be reduced all thofe reprefentations of living creatures, whether birds, or beafts, invented by Ctefibios, which were for the moft part performed by the motion of air, being forced up either by rarefaction, with fire, or elle by compreßion, through the fall

Cap.I. Mechanical Motions.
of fome heavier body, as warer, which by poffeffing the place of the aire, did thereby drive it to feek for fome other vent.

I cannot here omit (though it bee not altogether fo pertinent) to men. tion that late ingenious invention of the winde-gun, which is charged by the forcible compreffion of air, being injected through a Syringe; the frife and diftention of the imprifoned air ferving by the help of little fals or Thucs wishin, to ftop and keep clofe the vents by which it was admitted. The force of it in the difcharge is almoft equall to our powder-guns. I have found upon frequent trials(faith Merfennus) that a leaden bullet fhot from one of thefe gunnes againft a fone wall, the fpace of 24 paces from it, will be beaten into a thinne plate. It would be a confiderable addition to this experiment which the fame Authour mentions a little after, wherby he will make the fame charge of air to ferve for the difcharge of feverall arrows or bullets after one a. nother,

Cap. II.

of a failingChariot,that may wit bout horfes be drivenon the land by the wind as fips are on the Jea.

THe force of wind in the motion of fails may be applied alfo to the driving of a Chariot,by which a man may fail on the land as well as by a fhip on the water. The labour of horfes or other beafts, which are ufually applied tothis purpofe, being artificially fupplied by the ftrength of winds.

That fuch Chariots are commonly ufedin the Champion plains of Chima, is frequently affirmed by divers credible Authours. Boterus mentions that mento Virbium l.I. c. 10. they have beene tried alfo in Spaine,

who may eafily guide the courfe of it as he plearecth.

That eminent inquifitive man Peireskius, having travelled to Sceveling for the fight \& experience of this charior, would frequently after with much wonder mention the extream fwiftnes

Pet.Gaf Sendus.Vita Peireskiijl.2. of its motion. Commemorare folebat ftuporë quo correptus fuerat cum vento tram Patus citatij Jimo non per fentij cere tamen, nempe tă citus erat quä ventus. Though the wind were in it felf very fwift and ftrong, yet to paffengers in this Chariot, it would not be at all difcernable, becaufe they did goe with an equall fwiftneffe to the wind it felfe. Menthat ran before it feeming to goe backwards, things which feeme at a great diftance being prefently overtaken and left behind. In two howers fpace it would paffe from Sceveling to Putten, which are diffant from one another above 14 Hor aria milliaria, (faith the fame Authour) that is more then two and forty miles.
Grotius is very copious and elegant in the celebrating of chis invention, and the

Cap. 2. Mechanical Motions.
the Auchour of it in divers Epigrams. Ventivolam 'iphys deduxit in equora navim, Iupiter in ftelias, etbereamquedomum. In terreftre folum virtus Stevinia, nam nec
Tipby tuum fuerat, nec-Iovis iftud opus.
And in another place,
Imposuit plauftro vectantem carbafa, malum An potius navi, fubdidit ille rot as?

- -Scandit aquas navis currus ruit aere prono, Et merito dicas bic volat, illa natat.
Thefe relations did at the firt feem unto me, (and perhaps they will fo to others) fomewhat ftrange $\&$ incredible. But upon farther enquiry I have heard them frequentlyattefted from the particular eye-fight \& experience of fuch eminent perlons, whofe names I dare not cite in a bufineffe of this nature, which in thofe parts is fo very common, and little obferved.

I have not met with any Authour who doth treat particularly concerning the manner of framing this Charior, though Grotius mentions an elegant defcription of is in copper by one Geynius : and Hondius in one of his large maps of A fia, does give another conjecturall defcription of the like Chariots ufed in China.
The form of it is related to be very fimple \& plain, after this manner.

Grotii Poemata, Ep.19.

Ep.5.

Epig.20. - 21.

Cap.1. Mechanical Motions.

The body of it being fomewhat like a boar, moving upon 4 wheels of anequall bignes, with two fails like thofe in a fhip; there being fome cörrivance to turn \& fteer it by moving a rudder $\mathrm{w}^{\text {ch }}$ is placed beyôd the two hindmoft wheels : and for the ftopping of it, this muft be done either by letting downe the fail or turning it from the wind.
Of this kind they have frequently in Holland other little Veffels for one or two perfons to go upon the ice, having fledges inftead of wheels, being driven with a faile; the bodies of them like little boats, that if the ice fhould break, they might yet fafely carry a man upon the water, where the fail would be fill ufefull for the motion of it. I have often thought that it would be worth the experiment to enquire, whether or no fuch a failing charior might not be more conveniently framed wth movable fails, whofe force may be impreft from their motion, equivalent to thofe in a wind-mill. Their formoft wheels (as in other Chariots) for the greater facility, being fomew hat lower then the other, anfwerable to this figure.

Cap:2. Mechanical Motions.
In which the fails are fo contrived, that the wind from any Coaft will have a force upon them to turn them about, and the motion of thefe fails muft needs curn the wheels, and confequently carry on the Chariot it felf to any place though fully aceaint the wind) whither it fhall be directed.

The chief doubt will be, whether in fuch a contrivance every little ruggedneffe or unevennes of the ground, will not caufe fuch a jolting of the Chariot as to hinder the motion of its fails. But this perhaps (if it fhould prove fo) is capable of feverall remedies.

I have often wondred, why none of our Gentry who live near great Plaines, and fmooth Champions, have attempted any thing to this purpofe. The experiments of this kind being very pleafant, and not coftly: what could be more delightfull or better husbandry, then to make ufe of the wind (which cofts nothing, and eats nothing) in ftead of harfes? This being very eafie to be effected by thofe,
the convenience of whofe habitations doth accommodare them for fuch experiments.

Cap.III.

Concerning the fixed-Automata, Clocks, Spheres, reprefenting the beavenly motions: The feverall excellencies that are moft commendable in Juch kind of contrivances.

THe fecond kind of divziuaza were defcribed to be fuch Engines, as did receive a regular ard lafting motion from fomeching belonging to their own frame, whether weights, or fprings,\&c.

They are ufually diftinguifhed into \&ंUTópotra
$\{5 a ́ r a$, fixed and Itacionary.
¿ícágovra, moveable and tranfient.
I. The fixed are fuch as move only according to their feverall parts, and not according to their whole frame; In which, though each wheel hath a diftinct roation, yet the whole doth ftill remain unmoved. The chiefeft kind

Cap.3. Mechanicall Motions. kind of thefe are the clocks \& watches in ordinary ufe, the framing of which is fo commonly known by every Mechanick, that I hall not trouble the Reader with any explication of it. He that defires fuller fatisfaction, may fee them particularly defcribed by * Cardarn, f D. Flood, and others.

The firft invention of thele (faith Pancirollus) was taken from thatexperiment in the multiplication of wheels mentioned in Vitruvius, where he fpeaks of an inftrument whereby

* DeVari. et.Rer.l.9. C. 47. tTrait. 2. part.7.inx. cap. 4. Repert.Tit. 10. Architect, l.10.C. 14° a man may know how many miles or paces he doth goe in any fpace of time, whether or no he doe palfe by water in a boat or fhip, or by land in a chariot or coach : they have been contrived alfo into litele pocket inftruments, by which after a man hath walked a whole day cogether, he may eafily know how many fteps he hath taken. I forbear to enter upon a larger explication of thefe kind of Engines, becaufe they are impertinent unto the chief bufineffe that M_{2} I

164	Dedalus; or, Lib.2.
	I have propofed for this difcourfe. The Reader may fee them more particularly defcribed in the above cited place of Vitruvius, in ${ }^{*}$ Cardan, \dagger Bef-
	Somius, and others; I have here only
inftrumen-	mentioned them, as being the firft oc-
torum. wecker de	cafion of the chiefeft aitóp.ata that are now in ufe.
$\begin{aligned} & \text { fecretts. } .6 \\ & 15.6 .32 . \end{aligned}$	are now in ule. Of the fame kind with our clocks and watches (chough perhaps more elaborate and fubtle) was that fphere
Mentioned by cicero. Tuf-	invented by Archimedes, which did reprelent the heavenly motions : the
cul. 2 uaft.	diurnall and annuall courles of the
l.t.item	fun, the changes and afpects of the
De Nat. Deoiйl.z.	Moon, \&c. This is frequently celebrated in the writings of the Ancients, particularly in that known Epigram of Claudian:
	Fupiter in parvo cum cerneret atheravitro, Rijit, © ad Superos talia dicta dedit; Huccine ssortalis progre \int a potentia curce? fam mens in fragili luditzer orbe labor.
* The recret force	Jura poli, rerumque fidem, legefque Deorum, Ecce Syracufous tranftulit arte fenex.
f_{i} ö which the motion was impreffed.	Inclufus variis famulatur * piritus aftris, Et vivum certis motibues urget opus. Per-

Cap. 3. Mechanicall Motions.

165

Percurrit proprizm mentitus Signifer annum; Et. fimulata novo Cynthia menfe redit. famq; funm volvens audax induftria mundü Gaudet, ơ bumanâ fidera merste regit. Quid falfo infontem tonitru Sulmoner miror? Emula nature parva reperta manus.

Excellently Tranflated by T. Randolph.

Iove faw the heavens fram'd in a little glaffe, And laughing, to the gods thefe words did paffe; Comes then the power of mortall cares fo far? In brittle orbs my labours atted are.
The ftatutes of the Poles, the faith of things,
The laws of Gods, this Syracufan brings
Hither by art: Spirits inclos'd attend
Their feverall fpheres, and with fet motions bend The living work: each year the feigned Sun, Each month returns the counterfeited Moon. And viewing now her world, bold induftry Grows proud, to know the heavens -his fubjects be, Beleeve, Salmoneus hath falfe thunders thrown, For a poor hand is natures rivall grown.
But that this Engine fhould be made of glaffe, is fcarce credible, Lactantius mentioning the relation of it, affirms it to confift of braffe, which is more likely. It may be the outfide or cafe was glaffe, and the frame it felf of braffe. Calius Rbodoginus, fpeaking of the wondrous art in the contrivance M 3

Infit.l.2. 6.5.

Antig.lect. l 2.c.16.

$166 |$| 1 Dedalus; or, |
| :--- | :--- |

Guid. V. baldus praf.ad Mecban.
collect. Matbem. Procermad l.8.

De vanit.
Sciët.c.22. Schol. Mathem. l. .1.
So cardan too,l. 17. Monanth. in Mecha. Arift. Com. c. I.

Dr Hackwell, Apol. l. 2. .c.10. SeCt.I.

* De vitả Arcbimedis.
of this fphere, breaks out into this quære. Nonne igitsr miraculorum omnixm, maximum miraculam eft bomo? He might have faid Mathematicus: and another to this parpofe, Sic manus ejus naturam, ut natura ipfa manum imitata putetur. Pappus tels us, that $A r$ chimedes writ a Book deSpharopcia, Ócerning the manner of framing fuch Engines, and a feer him Pofidowius compoled another difcourfe on the fame fubject, though now either the ignorance or the envy of time hath deprived us of both thofe works And yet the art it felf is not quite perifhed, for we read of divers che like contrivãces in thele latter times. Agrippa af. firms that he himfelf had feen fuch a fphere, \& Ramus tels us how he beheld two of them in Paris, the one brought thither amongf other fooiles from Sicily, and the other out of Germany. And it is commonly reported, that there is yet fuch a fphere at Strasburg in Germany. * Rivaltus relates how Marinus Burgefius a Norman made two of them in France for the King.

And

Cap.3. Mechanical Motions.
And perhaps thele latter (faith he) were more exact then the former, becaufe the heavenly revolutions are now much be ter underttood then before. And befites it is queftionable, whether the ufe of ftel fprings was known in thofe ancient times; the application of which unto thefe kind of fpheres, muft needs be much more convenient then weights.
'Tis related alfo of the Confuli Boethius, that amongft other Mathematicall conrrivances, (for which he was famous) he made a fphere to reprefent the Suns motion, which was fo much admired, and talked of in thofe times, that Gusdibaldus King of Burgundy, did purpofely fend over Embafladors to Theodoricus the Em peroar, with intreaties that he would be a means to procure one of thefe Ipheres from Boethius; the Emperor thinking hereby to m ake his kingdom more famous and terrible unto torain Nations, duth write an Epiftle to Becthius, perfwading him to lend this inftrument. Quoties non funt credituri 2 M_{4}
quod
caffiodor. Cbron.Pet. Bertias praf.ad Confalat. Pbiles.

168	Dredalus; or, Lib.2.
Polya.tivo gil.ale Inveilt.rerum $l 2 c .5$. rardan Subtil. 4.17.	quod viderint: Queties hanc veritatem luforia fomnia putabust? Et quando fuerint à ftupore converfi, non audedebunt $\int e$ equales nobis dicere, apud quos fciunt fapientes talia cogitaffe. So much were all thefe kind of inventions ad. mired in thofe ruder \& darker times : whereas the infruments that are now in ule amongft us (though not fo much extolled) yet doe altogether equall (if not exceed) the other, both in ufefulneffe and fubtilty. Thechiefeft of chefe former Engines receiving their motion from weighes, and nor from Iprings, (which as I faid before) are of later and more excellent inven. tion. The particular circumftances for which the Automata of chis kind, are moft eminent, may be reduced to thele four. 1. The lafingneffe of their motion, without needing of any new fupply; for which purpofe there have been fome watches contrived to continue without winding up for a week together, or longer.

Cap.3. Mechanical Motions.

2. The eafinefie and fimplicity of their compofition; Art it felf being but the facilitating and contracting of ordinary operations, therefore the more eafie and compendious fuch inventions are,the more artificial fhould they be efteemed. And the addition of any fuch unneceffary parts, as inay be fupplied fome other way, is a fure fign of unskilfulneffe and ignorance. Thofe antiquated engines that did confift of fuch a needieffe multitude of wheels, and fprings, and fcrews, (like the old bypotbefis of the heavens) may be compared to the notions of a confufed knowledge, which are always full of perplexity and complications, and feldome in order; whereas the inventions of art are more regular, fimple, and perfpicuous, like the apprehenfions of a diftinct and thoroughly informed judgement. In this refpect the manner of framing the ordinary Automata, hath been much bettered in thefe later times above the former, and fhall hereafer perhaps be yet more advantaged. Thele

Dedalus; or, Lib. 2 .
Thefe kind of experiments (like all other humane arts) receiving additions from every days experiment.

To this purpofe there is an invention confifting only of one hollow orb or wheel, whereby the howers may be as truly diftinguifhed, as by any ordinary clock or watch. This wheel fhould be divided into feverall cavities, through each of which fucceffively either fand or water mult be contrived to paffe; the heavineffe of thefe bodies (being always in the afcending fide of the wheel) muft be counterpoifed by a plummet that may be fatrned about the pulley on the axis: this plummet will leifurely defcend, according as the fand by running out of one cavity into the next, doth make the feverall parts of the wheel lighter or heavier, and fo confequently there will be produced an equall and lafting motion, which may be eafily applyed to the diftinction of howers.
3. The multitude and variety of thofe fervices for which they may

Mechanicall Motions. CAP.3.

be ufefull. Unto this kind may we refer thofe watches, by which a man may tell not only the hower of the day, but the minute of the hower, the day of the month, the age and alpects of the Moone, \&c. Of this nature likewife was that larum mentioned by Walchius, which chough it were but two or three inches big, yer would both wake a man, and of it felf light a candle for him at any fet hower of the night. And thofe weights or fprings which are of to great force as to turn a mill, (as fome have been contrived) may be eafily applyed to more various and difficult labours.
4. The littleneffe of their frame. Nunquam ars magis quam in minimis nota eft (faith Aquinas.) The fmalneffe of the Engine doth much commend the skill of the artificer ; to this purpofe there have been watches contrived in the form and quantity of a Jewell for the ear, where the ftriking of the minutes may conftantly whifper unto us, how our lives doe flide away

Ramel.fig. 130.

Fab.9.

Iacks no bigger then a Walnue to turn any joint of meat.

172	Dedalus; or, LIB.2.
De fubtil. l.2. items l. 17.	away by a fwift fucceffion. Cardan tels us of a Smith who made a watch in the Jewell of a ring, to be worn on the finger, which did thew the howers, (non Jolum fagitta, fed itfu) not only by the hand, but by the finger too(as I may fay) by pricking it every hower.
	Cap. IV. of the moveable and Gradient Automata, reprefenting the motions of living creatures, various founds, of birds, or beasts, and fome of them articulate. THus much of chofe Auromata, which were faid to be fixed and ftationary. The other kind to be inquired after, are thofe that are moveable and tranfient, which are defcribed to be fuch engines as move not only according to their feverall parts, but alfo according to their whole frames. Thefe are again diftinguifhable into two forts:

I. Gradient.
2. Volant.

1. The Gradient or ambulatory, are fuch as require fome bafis or bottome to uphold them in their motions. Such were thofe ftrange inventions (commonly attributed to Dedalus) of (elfmoving ftatues, which (unleffe they were violently detained) would of themfelves run away. * Ariftotle affirms that Dedalus didthis by putting quick-filver into them. But this would have been too groffe a way for fo excellent an artificer, it is more likely that he did it with wheels \& weights. Of this kind likewife were Valcans Tripodes, celebrated by Homer, that were made to move up and down the houfe, and fight with one another. He might as well have contrived them into Journey-men ftatues, each of which with a hammer in his hand fhould have worked at the forge.

But amongft thefe fighting images, that in Cardan may deferve a mention, which holding in its hand a golden apple,beautified with many coftly Jewels;

Plato in
Menone. Arit.Polit.l. 1.c.3.

* De Animal.1.c.3.

Iliad. 18.

There have been alfo chariots driven bythe force of a fpring contrived within them. De Variet. rerum l. 82. c. 58.

Jewels; if any man offered to take it, the ftatue prefently fhot him to death. The touching of this apple ferving todifcharge feverall fhort bows, or other the like inftruments that were fecretly couched within the body of the image. By fuch a treachery was King Chennetus murdered (as Boethius relates.

It is focommon an experiment in thefe times to reprefent the perfons and actions of any ftory by fuch felfmoving images, that I fhall not need to explain the manner how the wheels and fprings are contrived within them.

Amongft thefe gradient Automata, that iron fpider mentioned in Walchius, is more efpecially remarkable, which being but of an ordinary bigneffe, befides the ourward fimilitude, (wcl was veryexact)had the fame kind of motions with a living fider, and did creep up and downas ifir had been alive. It muft needs argue a wonderfull art, and accurateneffe, to contrive all the inftruments requifite for fuch

Fab.9.
There have been other invertions to move on the water.
Navigium Sponte mobile, ac fui remigii autorem, faciam nullo negotio, faith Scaliger, Exerc. 326.

Cap.4. Mechanical Motions.
a motion in fo fmall a frame.
There have been alfo other motions contrived from Magneticall qualities, which will hew the more wonderful, becaufe there is no apparent reafon of their motion, there being not the leaft contiguity or dependence upon any other body that may occafion it; but it is all one as if shey fhould move up and down in the open air. Get a glaffe fphere, fill it with fuch liquois as may be clear of the fame colour, immixable, fuch as are oyl of tartar, and fpirit of wine: In which, it is eafie fo to poife a little globe or other flatue, that it fhall fwim in the center. Under this glaffe fphere, there fhould be a loadttone concealed, by the motion of which, this ftatue (having a needle touched within it) will move up and down, and may be contrived to fhew the hower or fign. See feverall inventions of this kinde in Kircher de arte Magnetica, l.2.

There have been fome artificiall images, which befides their feverall poftures in walking up and downe, have

176	Dedalus; or, Lib.2
$\begin{aligned} & \text { Col.Rbod. } \\ & \text { lect. Ant. } \\ & \text { lo.c. } 17 . \\ & \text { Maiolus } \\ & \text { Collog. } \end{aligned}$	have been made alfo to give feverall founds, wherher of birds, as Larks, Cuckoes, \&c. or beafts, as Hares, Foxes. The voices of which creatures fhall be rendred as clearly and diftinOtly, by thefe artificiall images, as they are by thofe naturall living bodies, which they reprefent. There have been fome inventions alfo which have been able for the utterance of articulate founds, as the fpeaking of certain words. Such are fome of the Ægyptian idols related to be. Such was the brazen head made by Friar Bacon, and that ftatue in the framing of which Albertus Magnus beftowed thiry years, broken by Aquinas, who came ro fee it, purpofely that he might boaft, how in one minute he had ruined the labour of fo many years. Now the ground and reafon how thefe founds were contrived, may be worth our inquiry. Firft then, for thofe of birds or beafts, they were made from fuch pipes or cals, as may expreffe the feverall

Cap.4. Mecianical Motions.

177

verall tones of thofe creatures which are reprefented: thefe cals are fo commonly known and ufed, that they need not any further explication.

But now about articulate founds there is much greater difficulty.Wal. chius thinks it poffible entirely to preferve the voice, or any words fpoken, in a hollow rrunk, or pipe, and that this pipe being rightly opened, the words will come out of it in the fame order wherein they were fpoken. Somewhat like that cold Countrey, where the peoples difcourfe doth freeze in the air all winter, and may be heard the next Summer, or at a great thaw. But this conjecture will need no refutation.

The more fubftantiall way for fuch a difcovery, is by marking how nature her felf doth imploy the feverall inftruments of fpeech, the tongue, lips, throat, teeth,\&zc. To shis purpofe the Hebrews have affigned each letter unto its proper inftrument. And befides, we fhould obferve what inarriculare founds doe refemble any of

Bacom Nat. bift exper. I39.200.

Traît de Magnetis proprietatibus.
the particular letters. Thus we may note the trembling of water to be like the letter L, the quenching of hot things to the letters Z, the found of frings, unto the letter Ng , the jirking of a fwitch the letter 2, \&c. By an exact obfervation of thefe particulars, it is (perhaps poffible to make a ftatue feak fome words.

> Cap. V.

Concerning the poßsbility of framing an Ark for fubmarine Navigations. The difficulties and conveniences of fuct a contrivance.

I will not be altogether impertinent unto the difcourfe of thele gradient Automata, to mention what Merfernus doth fo largely and pleafantly defcant upon, concerning the making of a fhip, wherein men may fafely fwim under water.

That fuch a contrivance is feafible and may be effected, is beyond all queftion, becaufe it hath been already

Cap.5. Mecbanicall Motions.
dy experimented here in Eagland by Cornelius Dreble, but how to improve it unto publike ufe and advantage, fo as to be ferviceable for remore voyages, the carrying of any confiderable number of men, with provifions and commodities, would be of fuchexcellent ufe as may deferve fome further inquiry.

Concerning which there are two things chiefly confiderable:
$5^{\text {many difficulties with their }}$ The remedies. great conveniences.
I. The difficulties are generally reducible to thefe three heads:
I. The letting our, or receiving in any thing, as therefifhall be occafion without the admiffion of water. If it have not fuch a convenience, thefe kind of voyages mult needs be very dangerous and uncomfortable, both by reafon of many noifome offenfive things, which fhould be thruft our, and many other needfull things which fhould be received in. Now herein will confift the difficulty, how to conN_{2}
rrive

Dedalus; or,
trive the opening of this veffell fo, that any thing may be put in or out, and yer the water not ruth into it with much violence, as it doth ufually in the leak of a fhip.

In which cale this may be a proper remedy; let there be certain leather bags made of feverall bigneffes, which for the matter of chem fhould be both tract.ble for the ufe and managing of them, and firong to keep out the water, for the figure of them being long and open at both ends. Anfwerable to thefe, let chere be divers windows, or open places in the frame of the hip, round the fides of which one end of thefe bags may be fixed, the other end coming withio the fhip being to open and thut as a purfe. Now if we fuppofe this bag thus faftned, to be tyed clofe about towards the window, then any thing that is to be fent our, may be fafely put into that end within the fhip, which being again clofe fhut, and the other end loofened, the thing may be fafely fent out without the admiffion of any water.

Cap.5. Mechanicall Motions.

So again, when any thing is to be taken in, it mult be firt received into that part of the bag towards the window, which being (after the thing is within it clofe ryed about, the other end may then be fafely opened. It is eafie to conceive, how by this means any thing or perfon may be lenc out, or received in, as there fhall be occafion, how the water, which will perhaps by degrees leak into feveral parts, may be empryed out again, with divers the like advantages. Though if there fhould be any leak at the bortome of this Veffell, yet very litele water would get in, becaufe no air could get our.
2. The fecond difficuly in fuch an Ark will be the motion or fixing of it accordingto occafion; The direct. ing of it to feverall places, as the voyage fhall be defigned, without which, it would be very ufeleffe, if it were to remain only in one place, or were to remove only blindfold, without any cerrain direction; And the contrivance of this may feem very diffi-

$$
\mathrm{N}_{3} \text { cult }
$$

182	Dedalus; or, Lib.z.
	cult, becaufe thefe fubmarine Navigators will want the ufuall advantages of winds and tides for motion, and the fight of the heavens for direction. But thefe difficulties may be thus remedied; As for the progreßive motion of it, this may be effected by the help of reverall Oars, which in the outward ends of them, fhall be like the fins of a fifh to contract and dilate. The paffage wherethey are admitted into the fhip being tyed about with fuch leather bags (as were mentioned before) to keep out the water. It will not be convenient perhaps that the motion in thefe voyages fhould be very fiwift, becaufe of thofe obfervations and difcoveries to be made at the botome of the fea, which in a little fpace may abundantly recompenfe the flowneffe of its progreffe. If this Ark be fo ballaft as to be of equall weight with the like magnitude of water, it will then be eafily movable in any part of it. As for the afcent of it, this may be eafily contrived, if there be fome great $\begin{array}{r}\text { weight }\end{array}$

CAP.5. Mechanical Motions.
weight at the botrome of the fhip (being part of its ballaft) which by fome cord within may be loolened from it; As this weight is let low. er, fo will the fhip afcend from it (if need be) to the very furface of the water; and again, as it is pulled clofe to the fhip, fo will it defcend.

For direction of this Ark, the Mariners needle may be ufefull in refpect of the latitude of places, and the courfe of this fhip being more regular then others, by reafon is is not fubject to Tempetts or unequall winds, may more certainly guidethem in judging of the longitude of places.
3. But the greateft difficulty of all will be this, how the air may bee fupplyed for refpiration: How conftant fires may be kept in it for light and the dreffing of food, how thole viciffitudes of rarefaction and condenfation may be maintained.

It is obferved, that a barrell or cap, whofe cavity will contain eight cubicall feet of air, will not ferve a Urinator or Diver for refpiration, aN_{4} bove

$$
184
$$

bove one quarter of an hower; the breath which is ofren fucked in and out, being fo corrupted by the mixsure of vapours, that nature rejects is as unferviceable. Now in an hower a man will need at leaft 360 refpirations, berwixe every one of which there thall be io fecond minutes, and confequently a great change and fupply of air will be neceffary for many perfon; and any long fpace.

And to likewile for the keeping of fre; a clole Veffell containing $10 \mathrm{CH}-$ bicall feet of air, will not fuffer a wax candle of an ounce so burn in it above an hower before ir be fuffocated, though this proportion (faith Mer \int enmus) doih not equally increafe for feverall lights, becaule four flames of an equall magnitude will be kepr alive she face of 16 lecond minutes, though one of thefe flames alone in the fame Veffell will not laft above 25 , or at moft 30 feconds, which may be eafily tryed in large glaffe borcles, ha ving wax candles lighed in them, and with their mouths inverted in water.

Cap.5. Mechanical Motions.

For the refolution of this difficulty, though I will not fay that a man may by cuftome (which in other things doth produce fuch Atrange incredible effects) be inabled to live in the open water as the fifhes doe, the infpiration and expiration of water ferving inftead of air, this being ufuall with many fifhes that havelungs; yet it is certain that long ufe and cuftome may ftrengthen men againft many fuch inconveniences of this kind, which to unexperienced perfons may prove very hazzardous : and fo it will not perhaps be unto thefe fo neceflary, to have the air for breathing fo pure and defecated as is required for others.

But further there are in this cafe thefe three things confiderable.
x. That the Veffell it felf fhould be of a large capacity, that as the air in it is corrupted in one part, fo it may be purified and renued in the other : or if the meer refrigeration of the air would fit is for breathing, this might be fomewhat helped with bellows,

186	Dedalus; or, LIB. 2
Harmon. l.4.prop.6. Monit.5.	bellows, which would cool it by motion. 2. It is not altogether improbable, that the lamps or fires in the middle of ir, like the reflected beams in the firt Region, rarefying the air, and the circumambient coldneffe towards the fides of the Veffell, like the fecond Region, cooling and condenfing of it, would make fuch a vicifficude and change of air,as might fit it for all its proper ufes. 3. Or if neither of thefe conjectures will help, yet Merfennus tels us in another place, that there is in France one Barrieus a Diver, who hath lately found out another art, whereby a man might eafily continue under water for fix howers together, and whereas ten cubicall feet of air will not ferve another Diver to breath in for half an hower, he by the help of a cavity, not above one or two foot at moft, will have breath enough for fix howers, and a lanthorn (carce above the ufuall fize to keep a candle burning as long as a man pleafe, which

Mechanicall Motions. CaP. $5 \cdot 187$

(if it be true, and were commonly known) might be a fufficient help againft this greateft difficulty.

As for the many advantages and conveniences of fuch a contrivance, it is not eafie to recite them.
I. 'Tis private, a man may thus goe to any coaft of the world invifibly, withour being difcovered or prevented in his journey.
2. 'Tis $\int a f f$, from the uncertainty of Tides, and the violence of Tempeffs, which doe never move the fea above five or fix paces deep. From Pirates and Robbers which do fo infeft other voyages; From ice and great frofts, which doe fo much endanger the paffages towards the Poles.
3. It may be of very grear advantage againft a Navy of enemies, who by this means may be undermined in the, water and blown up.
4. It may be of fpeciall ufe forthe relief of any place that is befieged by water, to convay unto them invifible fupplies: and fo likewife for the furprifall of any place that is acceffible by water.
5. It

| 188 |
| :--- | :--- |
| 5. It may be of unfpeakle benefit
 for fubmarine experiments and difco-
 veries : as
 The feverall proportions of fwift-
 neffe betwixt the afcent of a bladder,
 cork, or any other light fubftance in
 comparifon to the defcent of ftones
 or lead. The deep caverns and fub-
 terraneous paflages where the fea-
 water in the courfe of its circulation,
 doth vent it felf into other places,
 and the like. The nature and kinds
 of fifhes, the feverall arts of catch-
 ing them, by alluring them with
 lights, by placing divers nets about
 the fides of this Veffell, hooting the
 greater fort of them with guns, which
 may be put out of the fhip by the
 help of fuch bags as were mentioned
 before, with divers the like artifices
 and treacheries, which may be more
 fucceffively practifed by fuch who live
 fo familiarly together. Thefe fifh
 may ferve not only for food, but for
 fewell likewife, in refpect of that oyl
 which may be extracted from them;
 the way of dreffing meat by lamps, be- |

CAP.5. Mechanical Motions. ing in many refpects the moft convenient for fuch a voyage.

The many frefl fprings that may probably be met with in the bottome of the fea, will ferve for the fupply of drink and other occafions.

But above all, the difcovery of fubmarine treafures is more efpecially confiderable, not only in regard of what hath been drowned by racks, but the feverall precious things that grow there, as Pearl, Corall, Mines, with innumerable other things of great value, which may be much more eafily found out, and fetcht up by the help of this, then by any other ufually way of the Urinators.

To which purpofe, this great Veffell may have fome leffer cabines cyed about it, at various diftances, wherein feverall perfons as Scouts, may be lodged for the taking of obfervations, according as the Admirall fhall direct them. Some of them being frequently fent up to the furface of the water, as there fhall be occafion.

Cap.6. Mechanical Motions.

Cap. VI.

of the volant Automata, Archytas his Dove, and Regiomontanus his Eagle. The poßibility and great ulefulneffe of yuch inventions.

THe volant or flying Automata are fuch Mechanicall contrivances, as have a felf-motion, whereby they are carried alofe in the open air, like the flighe of Birds. Such wasthat wooden Dove made by Archytas, a Citizen of Tarentum, and one of Plato's acquaintance. And that wooden Eagle framed by Regiomontanus at N_{0} remberg, which by way of triumph, did fly out of the City to meet Charles the fift. This later Author is alloreported to have made aniron lly, 2ua ex artificis manu egreffa, convivas cir. cumvolitavit, tandemque veluti defeffa in Domini manus reverfa eft, which when he invited any of his friends, would fly to each of them round the cable, and at length (as being weary) return unto its Mafter.

191

Diog.Lace. l.8.

Pet. crini. tus de bo. ncft. dijcip. l.17.C.12.

Ramus

Scbol.mathemaliz.

Dubartas Gdays IW. I. Dee 1re= face to $E u$ clid.

$$
192
$$

De Variet. rerum lib. 12.0.58.

Cardan feems to doubs the poffibility of any fuch contrivance; his reafon is, becaufe the inftruments of it mult be firm and ftrong, and confequently they will be too heavy to be carried by their own force; but yet ((aith he) if it be a little helped in the firft rifing, and if there be any wind to affift is in the flight, then there is nothing to hinder, but that fuch motions may be poffible. So that he doth in effect grant as much as may be fufficient for the truth and credit of thofe ancient relations; and to diftruft them withour a ftronger argument, mult needs argue a blind and perverfe incredulity. As for his objection concerning the heavineffe of the materials in fuch an invention, it may be anfwered that it is eafie to contrive fuch fprings and other inAtruments, whofe frength thall much exceed their heavinefle. Nor can he fhew any caufe why thefe Mechanicall motions may not be as ftrong, (though not folarting) as the naturall ftrength of living creatures. 3

Cap.6. Mecinanical Motions.
Scaliger conceives the framing of fuch volant Automata, to be veryeafie. Volant is columbe machinulam, cujus autorem Archytam tradurt, profiteri audeo. Thofe anciene motions were thought to be contrived by the force of fome included air: So Gellius, Ita erat fcilicet librament is fupenfum, oo aur \hat{a} piritus inclufâ atque occultâ conftum, ぷc. As if there had been fome lamp, or orher fire within it, which might produce fuch a forcible rarefaction, as thould give a motion to the whole frame.

But this may be better performed by the ftrength of fome fuch foring as is commonly ufed in warches; this fpring may bee applyed unto one wheel, which thall give an equall motion to both the wings; thefe wings having unto each of them another fmaller fpring by which they may be contracted and lifted up: So thar being forcibly depreffed by the Atrength of the great and ftronger (pring, and lifted up again by the o ther two. According to this fuppofition,

193

Subtil.
Exercit: 326

Noct.Attic.l.ıo.
cap. 12 . where be thinks it fo Itrange an invention that he ftyles Res abborrens à fide. Atban. Kircher de Magnete 6.2.par.4. Proem: doth promife a large difcourfe cócerning thefe kind of inventions in another
Treatife which he fyles 0 ediptus Acsyptiacus.

Cap.6. Mechanicall Motions.
after them, as being in themfelves of excellent curiofity; yet there are fome other inventions depend upon them of more generall benefit and greater importance. For if there be any fuch artificiall contrivances that can flye in the air, (as is evident from the former relations, together with the grounds here fpecified, and I doubt not, may bee eafily effected by a diligent and ingenious artificer) then it will clearly follow, that it is poffible alfo for a man to fly himfelf: It being eafie from the fame grounds to frame an inftrument, wherein any one may fit, and give fuch a motion unto it, as thall convey him aloft through the air. Then which there is not any imaginable invention that could prove of greater benefit to the world, or glory to the Author. And therefore it may juftly deferve cheir enquiry, who have borh leifure and means for fuch experiments.

But in thefe practicall ftudies, unleffe a man be able to goe so the eryall of things, he will perform but O_{2} litcle.

196 Dedalus;or, Lib.z.
little. In fuch matters,
Horace. (as the Poet faith) a generall (peculation, without particular experiment, may conjecture at many things, but can certainly effect nothing. And therefore I fhall only propofe unto the world, the Theory and generall grounds that may conduce to the eafie and more perfect difcovery of the fubjeit in queftion, for the incouragement of thofe that have both minds and means for fuch experiments. This fame Scholars fate,

Res angufta domi, and
--curta fupellex
is that which hinders the promoting of learning in fundry particulars, and robs the world of many excellent inventions. We read of Ariftotle, that he was allowed by his pupill Alexander 800 talents a year, for the pay ment of Fifhers, Fowlers, and Hunters, who were to bring him in feverall creatures, that fo by his particular experience of their parts and difpofitions, he might be more fitly pre. pared

Cap.6. Mechanicall Motions.

pared to write of their natures. The reafon why the world hath nor many Arijlotles is, becaule it hath fo few Alexanders.

Amonght other impediments of any ftrange invention or atcempts, it is none of the meaneft difcouragements, that they are fo generally derided by common opinion, being eifeemed only as the dreams of a melaacholy \& diftempered fancy, Eufebius fpeaking with what neceffiry every thing is confined by the laws of nature, and the decrees of providence, fo that nothing can goe out of chat way, unto which nacurally it is defigned; as a filh cannor refide on the land, nor a man in the water, or aloft in the air, infers, that therefore none will venture upon any fuch vain attempt, as
 àv woumiont, unleffe his brain be a little crazed with the humour of melancholy; whereupon he advifes that we flould not in any particular endevour to tranfgreffe the bounds of

197

Consa Hi-
erocl.confut.l.x.

Firgil．Ae． uncid．l．6．

Tึnvôy ©imudsúcy，and fince we are na－ rurally defitute of wings，not to imi－ tare the flight of Birds．That faying of the Poet，

Demens quinimbos \＆non imitabile fulumen，心よ．
hath been an old cenfure applyed unto fuch as ventured upon any flrange or incredible attempt．

Hence may we conceive the rea－ fon，why there is fo little intima－ tion in the writings of antiquity，con－ cerning the poffibility of any fuch in－ vention．The Ancients durft not fo much as mention the art of flying， but in a fable．
－Dadalus，ut fama eff，fugiens Minoia regna，
Prapetibus pennis anfus fe crederecalo， IInfuctum per iter gelidas enavit ad ar－ RTos，䢒．
It was the cuftome of thofe former ages，in their overmuch gratitude，to advance the firt Authours of any ufefull difcovery，amongt the num－ ber of their gods．And Dedalus be－ ing fo famous amongtt them for fundru

Cap.7. Mechanical Motions.
fundry Mechanicall inventions (e (pecially the fails of fhips) though they did not for thefe place him in the heavens, yer they have promoted him as near as they could, feigning him to fly alofe in the air, when as he did buz fly in a fwift fhip, as Diodorus relates the Hiftoricall truth, on which that fiction is grounded.

Cap. Vil. $^{\text {a }}$

Concerning the art of flying. The feverall mays whereby this hath been or may be attempted.

IHave formerly in two other* Difcourfes mentioned the poffibility of this art of flying, and intimated a further inquiry into it, which is a kind of engagement to fome fuller difquifitions and conjectures to that purpofe.

There are four feverall ways whereby this flying in the air, hath beene or may be attempted. Two of them by the ftrength of other things, and
O_{4}
two

So Eufebius too.

World in the Moon, ca 14. Mercury, or the fecret and fwift mer. fenger, c.4.
swo of them by our owne ftrength. 1. By fipirits or Angels.
2. By the help of fowls.
3. By wings faftned immediately to the body.
4. By a flying chariot.

Zanch.de
oper.pars x l.4.

* 2 Kings

2. 11.

\dagger Acts 8.
39.

Dan. A. poc 39.

Luke 4.
Eraftus de Lamiis.

Hiff.Iud. 4.5.4.26.

1. For the firt, we read of divers that have paffed fwiftly in the air, by the help of firits and Angels, whether good Angels, as * Elias was carried unto heaven in a fiery charior : as †Pbilip was conveyed to Azotus, and Habbacuck from Jewry to Babylon, and back again immediately: Or by evill Angels, as our Saviour was carried by the Devill to the top of a high mountain, and to the pinacle of the Temple. Thus witches are commonly related to paffe unto their nfuall meetings in fome remote place; and as they doe fell windes unto Mariners, fo likewife are they fometimes hired to carry men fpeedily through the open air. Acoffa affirms that fuch kind of paffages are ufuall amongft divers Sorcerers with the Indiansat this day.

Cap.\%. Mechanical Motions.

So Kepler in his Aftronomicall dream, doth fancy a witch to be conveyed unto the Moon by her Familiar.

Simon Magus was fo eminent for miraculous forceries, that all the people in Samaria from the leaft to the greateft, did efteern him as the great power of God. And fo famons was he at Rome, that the Emperour erected a fratue to him with this infcription, Simoni Deo Sancto. 'Tis fioried of this Magician, that having challenged Saint Peter to doe miracles with him, he attempted to fly from the Capitoll to the Aventine hill. But when he was in the midft of the way, Saint Peters prayers did overcome his forceries, and violently bring him to the ground, in which fall having broke his thigh, within a while after he died.

But none of all thefe relations may conduce to the difcovery of chis experiment, as it is here enquired after, upon natural \& artifcial grounds.
2. There are others who have con-

201

A ats 8.10.

Hegelip. 1.3 C. 2.

Pol.Virgil. de Inver.
Rerum.l.8. c. 3 .

Pet.Crinitus de Honefta Difciplin.l 8.c. I. miftruits this relation as fabulous. Non enim Lucas hoc omififfet.

Mechanicall Motions. CaP.7. 203

the Lencatians, that they were wont upon a fuperftition to precipitate a man from fome higlt cliffe into the fea, tying about him with frings at fome diftance, many grear fowls, and fixing unto his body divers fea hers fpread, to break the fall; which (faith the learned Bacon, it it were diligent1g and exactly contrived) would be able to hold up, and carry any proportionable weight; and therefore he advifes others to think further upon this experiment, as giving fome light to the invention of the art of flying.
3. 'Tis the more obvious and common opinion that this may be effeCted by wings faftned immediately to the body, this coming neareft to the imitation of nature, which fholld be obferved in fuch attempts as thefe. This is that way which Fredericus Hermannus in his little difcourfe de Arte volandi, doth onely mention and infift upon. And if we may truft credible ftory, it hath been frequently attempred not without fome fucceffe.

Nat. biff. experim. 886.

So the ancient Bri tifh Bl aduḍ.

Erneftus Burgiavus in Panoplia PbyficoVulcania. Sturmius in Lat: binguarefolut.

Melancholy,Pai.2. Seit. Mem.z.

- Tis related of a certaine Englifh Munk called Elmerus, about the Confeffors time, that he did by fuch wings fly from a Tower above a furlong; and fo another from Saint Marks fteeple in Venice; another at Norinberge; and Bufbequius fpeaks of a Turk in Conftantinople, who attempted fomething this way. M. Burton mentioning this quotation, doth beleeve that fome new-fangled wit ('tis his cynicall phrafe) will fome cime or other find out this att. Though the truth is, moft of thefe Artifts did unforunately mifcarry by falling down and breaking their arms or legs, yer that may be imputed to their want of experience, and too much fear, which muft needs poffeffe men in fuch dangerous and ftrange attempts. Thofe things that feem very difficult and fearfull at the firf, may grow very facil after frequent triall and exercife. And therefore he that would effect any thing in this kind, muft be brought up to the conftant practile of it from his youth. Trying

Cap.7. Mechanical Motions.
ing firft onely to ufe his wings in

It is not more incredible that frequent practife and cuftome fhould inable a man for this, then for many other things which we fee confirmed by experience. What ftrange agility \& activeneffe doe our common tumblers \& dancers on the rope attain to by cōtinuall exercife? 'Tis related of certain Indians, that they are able when a horfe is running in his full career, to ftand upright on his back, to curn thêfelves round, to leap down, gathering up any thing from the ground, 8 im mediatly to leap up again, to fhoor exactly at any mark, the horfe not inter-

206

 Dadalus; or, Lib. 2mitring his courfe. And foupontwo horfes together, the man fetting one of his feet upon each of them. Thefe things may feem impoffible to others, and it would be very dangerous for any one to attempt them, who hath not firt gradually atrained to thefe arts, by long practife and triall; and why may not fuch practife inable him as well for this other experiment, as for thefe things?

There are others who have invented ways to walk upon the water, as regularly and firmly as upon the land. There are fome fo accuftomed to this element, that it hath been almoft as naturall to them, as to the fifh ; men that could remain for above an hower together under water. Pontanus mentions one who could fwim above a hundred miles together, from one fhore to another, with great fpeed,

Treatife of cuitome. and at all times of the year. And it is foried of a cettain young man, a Sicilian by birth, and a Diver by profeffion, who had fo continually ufed himelff to the water, that he could

CaP. 7. Mechanical Motions.

not enjoy his healch out of it. If at any time he faid with his friends on the land, he fhould be fo cormented with a pain in his ftomack, that he was forced for his health to rerurne back again to fea; wherein he kept his ufuall refidence, and when hee faw any fhips, his cuftome was to fwim to them for relief, which kind of life he continued till he was an old man, and dyed.

I mention thefe things to fhew the great power of practife and cuftome, which might more probably fucceed in this experiment of flying (ifit were but regularly attempted) then in fuch ftrange effects as thefe.
It is a ufuall practife in thefetimes, for our Funambulones, or Dancers on the Rope, to attempr fomewhat like to flying, when they will with their heads forwards flide downe a long cord extended; being faftned at one end on the top of fome high Tower , and the other at fome diftance on the ground, with wings fixed to cheir fhoulders, by the fhaking of which they
they will break the force of their defcent. It would feem that fome artempts of this kind were ufuall amongft the Romanes. To which that

* De guber. Dei.l.6.

Annot.in Salvi. expreffion in * Salvian may referre, where amongtt other publike fhewes of the Theater, he mentions the Pe taminarii : which word (faith fo: Braßicanus) is fcarce to be found in any other Authour, being not mentioned either in fulius Pollux, or Politian. 'Tis probably derived from the Greek word $\pi t \pi z=3$, which fignifies to fly, and may refer to fuch kind of Rope-dancers.

But now becaufe the arms extended, are but weak and eafily wearied, therfore the motions by them are like: to be but fhort and flow, aniwerable it may be to the flight of fuch domettick fowl as are mott converfant on the ground, which of themfelves we fee: are quickly weary, and therefore muchi more would the arm of a man, as being; not naturally defigned to fuch a mo" tion.

It were therefore worth the inqui-

Cap.7. Mecianical Motions.

ry to confider whecher this might not be more probably effected by the labour of the feet, which are naturally more ftrong and indefatigable : In which contrivance the wings flould come down from the thoulders on each fide as in the other, but the motion of them fhould be from the legs, being thruft out and drawn in again one after another, fo as each leg fhould move both wings, by which means a man fhould (as it were) walk or climbe up into the air: and then the hands and arms might be at leifure to helpand direct the motion, or for any other fervice proportionable to their ftrength. Which conjecture is not without good probability, and fome fpeciall advantages above the other.
4. But the fourth and laft way feems unto me altogether as probable, and much more ufefull then any of the reft. And that is by a flying charior, which may be fo contrived as to carry a man within it ; \& though the ftrength of a fpring might perP haps
haps be ferviceable for the motion of this engine, yet it were better to have it affifted by the labour of fome intelligent mover as the heavenly orbs are fuppofed to be turned. And therefore if it were made big enough to carry fundry perfons together, then each of them in their feverall turns might fucceffively labour in the caufing of this motion; which thereby would be much more conftant and lafting, then it could otherwife be, if it did wholly depend on the ftrength of the fame perfon. This contrivance being as much to be preferred before any of the other, as fwimming in a fhip before fwimming in the water.

Cap. VIII.

A refolution of the two chief difficulties that feem to oppofe the poßibility of a flying Chariot.

T
He chief difficulties againft the poffibility of any fuch contrivance may be fully removed in the refolu-
tion

Cap.8. Mechanicall Motions.

tion of thefe two Qucres.
I. Whether an engine of fuch capacity and weight, may be fupported by fo thin and light a bocy as the air?
2. Whether the ftrength of the perfons within it, may be fufficient for the motion of it?

1. Concerning the firf ; when Callias was required by the men of Rhodes, to take up that great Helepolis, brought againft them by Demetrius, (as he had done before unto fome leffe which hee himfelfe had made.) He anfwered that it could not be done. Nonnulla enim funt que. in excmplaribus videntur fimilia, cum awtem crefcere coperunt, dilabuntur. Be-

So Ramus
Schoi. Mathem.l. 1. caufe thole things that appear probable in leffer models, when they are increafed to a greater proportion, doe thereby exceed the power of art. For example, though a man may make an inftrument to bore a hole, an inch wide, or half an inch, and fo leffe; yer to bore a hole of a foot wide, or two foot, is not fo much as to bee P_{2} chought
thought of. Thus, though the air may be able to uphold fome leffer bodies, as thofe of birds, yet when the quantity of them is increafed to any great extenfion, it may juftly be doubed, whether they will notex. ceed the proportion that is naturally required unto fuch kind of bodies.

Tothis I anfwer, that the engine can never be too big or too heavy, if the fpace which it poffeffes in the air, and the motive faculty in the inftrument be anfwerable toits weight. That faying of Callias was but a groundleffe fhift andevafion, wherby hee did endeavour to palliate his own ignorance and difability. The urmoft truth which feems to be implyed in it, is this: That there may be fome bodies of fogreat a bigneffe, \& gravi-ty, that it is very difficult to apply to much force unto any particular inttrument, as thall be able to move: them.

Againft the example it may be af-: firmed and eafily proved, that it is e-qually poffible to bore a hole of any bigneffe,
Cap.8. Mechanicall Motions.
bigneffe, as well great as little, if we fuppofe the inftrument, \& the ftrength and the application of this ftrength to be proportionable; But becaufe of the difficulty of thefe concurrent circumftances in thofe greater and more unufuall operations, therefore doe they fallly feem to be abfolutely impoffible.

So that the chief inference from this argument and example, doth imply onely thus much, that it is very difficult to contrive any fuch motive power, as thall be anfwerable to the greatneffe and weight of fuch an inAtrument as is here difcourfed of, which doth not at all impair the truch to be maintained; For if the poffibilicy of fuch a motion be yeelded, we need not make any fcruple of granting the difficultie of it; It is this muft adde a glory to the invention; and yer this will not perhaps feem fo very difficult to any one who hath but diligencly obferved the flight of fome other birds, particularly of a Kite, how he will fwim up and down P_{3} in

Cap.8. Mechanical Motions.
as is equall to them in bigneffe : So likewife is it in the bodies that are carried in the air. It is not their greatneffe (though never fo immenfe) that can hinder their being fupported in that light element, if we fuppofe them to be extended unto a proportionable fpace of air. And as from the former experiments, Archimedes hath compofed a fuble fcience in his Book, De infdentibus humido, concerning the weight of any heavy body , in reference to the water wherein it is: So from the particulartriall of thefe other experiments, that are here inquired after, it is poffible to raile a new fcience, concerning the extenfion of bodies, in comparifon to the air, and motive faculties by which they are to be carried.

We fee a great difference betwixt the feverall quantities of fuch bodies, as are commonly upheld by the air; not only little gnats, \& flies, but alfo the Eagle and orher fowl of vafter magnitude. Cardana and Scaliger doe unanimoully affirm, that there is a P_{4} bird

Subtil.l.ı. Exercit. 231.
bird amongft the Indians of fo great a bigneffe, that his beak is often ufed to make a fheath or fcabbard for
Fibor. a fword. And Acoftatels us of a fowl in Peru called Condores, which will of themfelves kill and eat up a whole Calf at a time. Nor is there any reafon why any other body may not be fupported and carried by the air, though it fhould as much exceed the quantity of the fe fowl, as they doe the quantity of a flie.

Marcus Polus mentions a fowl in Madagafoar, which he cals a Ruck, the feathers of whofe wings are 12 pa ces, or threefcore foot long, which can with as much eafe, foop up an Elephant, as our Kites doe a Moufe. If this relation were any thing credible, it might ferve as an abundant proof for the prefent quare. But I conceive this to be already fo evident, that it needs not any fable for its further confirmation.
2. The other doubr was, whether the flrength of the other perfons within it, will be fufficient for the moving

Cap.8. Mechanical Motions. moving of this engine? I anfwer, the main difficulty and labour of it will be in the raifing of it from the ground; neer unto which, the earths attractive vigor, is of greateft efficacy. But for the better effecting of this, it may be helped by the ftrength of winds, and by taking its firt rife from fome mountain or other high place. When once it is alofs in the air, the motion of it will be eafie, as it is in the flight of all kind of birds, which being at any great diftance from the earth, are able to continue their motion for a long time \& way, with little labour or wearineffe.

- Tis certain from common relation and experience that many birds doe crofs the feas for divers hundred miles together : fundry of them amongft us, which are of a fhort wing and flight, as Blackbirds, Nightingales, \&c. doe flie from us into Germany, and other remoter Countries. And Mariners doe commonly affirm that they have found fome fowle above fixe hundred miles from any land. Now

Plin.l.10. c.23.

Dedalus; or, Lib. 2

Now if we fhould fuppofe thefe birds to labour fo much in thofe long journies, as they doe when they flie in our fight and near the earth, it were impoffible for any of them to paffe fo farre without refting. And therefore it is probable, that they do mount unto fo a high a place in the air, where the naturall heavineffe of their bodies does prove but little or no impediment to their flight; Though perhaps either hunger, or the fight of hips, or the like accident, may fometimes occafion their defcending lower, as we may gheffe of thofe birds, which Mariners have thus beheld, and divers others that have been drowned and caft up by the fea.

Whence it may appear, that the motion of this chariot (though it may be difficule at the firt) yet will ftill be eafier as it afcends higher, sill at length it fhall become utterly devoid of gravity, when the leaft ftrength will be able to beftow upon it a fwift motion: as I have proved

Mechanicall Motions. Cap.8. 219

more at large in another difcourfe.
But then, (may fome object) If it be fuppofed that a man in the æthereall air does lofe his own heavineffe, how fhall he contribute any force towards the motion of this inftrument?

I anfwer, The ftrength of any living creature in thefe externall motions, is fomething really diftinct from, and fuperadded unto its naturall gravity: as common experience may fhew, not only in the impreffion of blows or violent motions, as a river hawk will frike a fowl with a far greater force, then the meer defcent or heavineffe of his body could poffibly perform. But alfo in thofe actions which are done without fuch help, as the pinching of the finger, the biting of the teeth, \&xc. all which are of much grearer ftrength then can proceed from the meer heavines of thofe parts.

As for the other parricular doubts, concerning the extream thinneffe, and coldneffe of this xthereail air, by reafon of which, it may feem to be al-

220	Dedalus; or, Lib.2.
	altogether impaffible, I have already refolved them in the above cited dilcourfe. The ufes of fuch a Chariot may be various: befides the difcoveries which might be thereby made in the lunary world; It would be ferviceable alfo for the conveyance of a man to any remote place of this earth: as fuppofe to the Indies or Antipodes. For when once it was elevated for fome few miles, fo as to be above that orb of magnetick virtue, which is carried about by the earths diurnall revolution, it might then be very eafily and fpeedily directed to any particular place of this great globe. If the place which we intended were under the fame parallel, why then the earths revolution once in 24 howers, would bring it to be under us, fo that it would be but defcending in a ftraight line, and wee might prefently be there. If ir were under any other parallel, it would then only require that we fould direct it in the fame Meridian, til we did come to that paral

$\frac{\text { Cap.8. Mechanical Motions. }}{\text { parallel ; and then (as before) a man }}$ might eafily defcend unto it.

It would be one great advantage in this kind of travelling, that one thould be perfectly freed fromall inconveniences of ways or weather, not having any extremity of hear, or cold, or Tempefts to moleft him. This \mathfrak{x} thereall air being perpetually in an equall temper and calmneffe. Pars fuperior mundi ordinatior eft nec in nubem cogitur, nec in tempestatem impellitur, nec verfatur in turbinem, omni tumultu caret, inferiora fulminant. The upper parts of the worldarealways quiet and ferene, no winds and bluftring there, they are thefe lower clowdy regions that are fo full of tempefts and combuttion.

As for the manner how the force of a fpring, or (in ftead of that) the Atrength of any living perfon, may bee applyed to the motion of there wings of the Chariot, it may eafily be apprehended from what was formerly delivered.

There are divers other particulars

Sen. de Irâ l.3.c. 6. Pacens fummatenent. Lu* can.

As well too long as too flort, too broad as too narrow, may be an impediment to the motion, by making it more difficult,flow and Hagging.
to be more fully enquired after, for the perfecting of fuch a flying Chariot; as concerning the proportion of the wings both for their length and breacth, in comparifon to the weight which is to bee carried by them, as alfo concerning thofe feciall contrivances, whereby the frength of thefe wings may be feverally applyed either to afcent, defcent, progreffive, or a turning motion; All which, and divers the like enquiries can onely be refolved by particular experiments. We know the invention of fayling in thips does continually receive fome new addition from the experience of every age, and hath been a long while growing up to that perfection, unto which it is now arrived. And fo muft it be expected for this likewife, which may at firf perhaps feeme perplexed with many difficulties and inconveniences, and yet upon the experience of frequent tryals, many things may be fuggefted to make it more facil and commodious.

Cap.8. Mechanical Motions.

He that would regularly artempt any thing to this purpote, fhould obferve this progreffe in his experiments, he fhould firft make enquiry what kind of wings would bee mof ufefull to this end; thole of a Bat being moft eafily imitable, and perhaps nature did by them purpofely intend fome intimation to direct us in fuch experiments; that creature being not properly a bird, becaufe not amongft the Oviparas, to imply that other kind of creatures are capable of flying as well as birds, and if any fhould attempt it, that would be the beft pattern for imitation.

After this he might try what may be effected by the force of fprings in leffer models, anfwerable unio Ar chytas his Dove,and Regiomontanus his Eagle: In which he muft be carefull to obferve the various proportions betwixt the ftrength of the fpring, the heavineffe of the body, the breadth of the wings, the fwifneffe of the motion, \&c.

From thefe he may by degrees afcend to fome larger effays. Cap.

223
-

Cap.9. Mechanical Motions.

of them as yet, hath ever beene found out, though if this have, yet like the other, it is not plainly treated of by any Authour.

Not but that there are fundry difcourfes concerning this fubjeft, but they are rather conjectures then experiments. And though many inventions in this kind, may at firft view bear a great fhew of probability, yet they will fail being brought to triall, and will not anfwer in pracife what they promifed in Ipeculation. Any one who hath beene verfed in thefe experiments mult needs acknowledge that hee hath been often deceived in his ftrongett confidence ; when the imagination hath contrived the whole frame of fuch an inftrument, and conceives that the event muft infallibly anfwer its hopes; yer then, does it ftrangely deceive in the proof, and difcovers to us fome defect, which we did not before take notice of.

Hence is it, that you thall fcarce talk with any one who hath never fo little fmattering in thefe arts, but he
will inftantly promife fuch a motion, as being but an eafie archievement, till further triall and experience hath taught him the difficulty of it. There being no enquiry that does more entice with the probability, and deceive with the fubtilty. What one fpeakes wittily concerning the Philofophers ftone, may be juftly applyed to this, that it is Cafta meretrix, a chafte whore. 2uia multos invitat, nerninem admittit, becaufe it allures many, but admits none.
I fhall briefly recite the Ceverall ways whereby this hath been attempted, or feems moft likely to be effected, thereby to contract and facilitate the enquiries of thofe who are addicted to the e kind of experiments; for when they know the defects of other inventions, they may the more eafily avoid the fame, or the like in their own.
The ways whereby this hath been attempted, may be generally reduced to thefe three kinds:
I. By Chymicall extractions.

Cap.9. Mechanicall Motions.

2. By Magneticall virtues.
3. By the naturall affection of gravity.
I. The difcovery of this hath been attempted by Chymiftry. Paracelfus and his followers have bragged, that by their feparations and extractions, they can make a little world which fhall have the fame perpetuall motions with this Microcofme, with the reprefentation of all Meteors, Thunder, fnow, rain, the courfes of the fea in its ebbs and flows, and the like; But thefe miraculous promifes would require as great a faith to beleeve them, as a power to perform them : And though they often talk of fuch great matters,

At nufquam totos inter qui talia curant,
Apparet ullws, quire miraculatanata Comprobet--
yet we can never fee them confirmed by any reall experiment; and then befides, every particular Authour in that art, hath fuch a diftinct language of his own, (all of them being fo full
of allegories and affected obfcurities) that 'tis very hard for any one (unleffe hee bee throughly verfed amongft them) to finde out what they mean, much more to try it.

Etter.Mathem. Recreat. prob. 118.

One of thefe ways (as I finde it fet down) is this. Mixe five ounces of x, with an equall weight of \mathfrak{z}, grinde them together with ten ounces of fublimate, diffolve them in a Cellar upon fome marble for the fpace of four days, till they become like oyl olive; diftill this with fire of chaffe, or driving fire, and ir will fublime into a dry fubftance: and fo by repeating of thefe diffolvings and diftillings, there will bee at length produced divers fmall atomes, which being put into a glaffe well lured, and kept dry, will have a perpetuall motion.

I cannot fay any thing from experience againft this; but me thinks it does not feem very probable, becaufe things that are forced up to fuch a vigoroufneffe and activity, as thefe ingredients feem to be by their frequent

Cap.9. Mechanicall Motions.
quent fublimatings and diftillings, are not likely to be of any duration; the more any thing is ftrerched beyond its ufualll nature, the leffe does it laft, violence and perpetuiry being no companions. And then befides, luppofe it true, yet fuch a motion could nor well be applied to any ufe, which muft needs take much from the delight of it.

Amongft the Chymicall experiments to this purpofe, may be reckoned up that famous motion invented by Cornelius Dreble, and made for King \mathcal{F} ames; wherein was reprefented the conftant revolutions of the Sun and Moone, and that without the help either of fring or weights. Marcellus Vranckhein, fpeaking of the means whereby it was performed, he cals it, Scintillula animua magnetica mundi, feu Aftralis of infenfibilis piritus ; being that grand fecret, for the difcovery of which, thofe Dictators of Philofophie, Democritus, Pythagoras, Plato, did eravell unto the Gymnofophifts, and Indian Priets.

Celebrated in an Epigram by Hugo Grotius. l. 1. Epi. Epift. ad Emefliu de Lamp: Viba. 3 The

230	Dedalus; or, Lib.z.
	The Authour himfelfin his difcourfe uponit, does not at all reveal the way, how it was performed. But there is one Thomas Tymme, who was a familiar acquaincance of his, and did often pry into his works, (as he profeffes himfelf) who affirms it to bee
Philofophical diaconfer. 2. cap.3:	done thus; By extracting a fiery pirit out of the Minerall matter, joyning the fame with his proper aire, which included in the Axle tree (of the firf moving wheel) being hollow, carricth the other wheels, making a contisuall rotation, except iffue or vent bee given in this bollow axle tree, whereby the imprifoned pirit may get forth. What ftrange things may be done by fuch extractions, I know not, and

Cap.9. Mechanical Motions.

near the center of a wheel; and therefore though fuch a firit might of i it felf have an agitation, yet 'tis not eafily conceivable how it fhould have frength enough to carry the wheels about with it. And then the abfurdity of the Authours citing this, would make one miftruft his miftake; he urges it as a ftrong argument againft Copernicus, as it becaufe Dreble did thus contrive in an Engine, the revolution of the heavens, and the immoveableneffe of the earth, therefore it muft needs follow that 'tis the heavens which are moved, and not the earth. If his relation were no truer then his confequence, it had not been worth the citing.

$$
232
$$ Dedalus; or, Lib.2.

Cap. X.
of fubterraneous lamps, divers biftoricall relations concerning their duration for many bundred yeares together.

UNro this kind of Chymicall experiments, wee may moft probabiy reduce thofe perperuall lamps, which for many hundred yeares rogether have continued burning without any new fupply in the fepulchres of the Ancieris, and might (for ought wee know) have remained fo for ever. All fire, and efpecially flame, being of an active and firring nature, it cannot therefore fubfift withour motion; whence it may feem, that this great enquiry hath been this way accomplithed: and therefore it will be worth our examination to fearch further into the particulars that concern this experiment. Though it be not fo proper to the chief purpofe of this difcourfe, which concerns Mechanicall Geometry, yet the fubtiley

Cap.10. Mechanical Motions.
and curioficy of it', may abundantly requite the impertinency.

There are lundry Authours, who treat of this fubject on the by, and in fome particular pallages, bur none that I know of (except Fortunius Licetus) that hath writ purpofely any fet and large difcourfe concerning it: out of whom I hall borrow many of thofe relations and opinions, which may mon naturally conduce to the prefent enquiry.

For our fuller underftanding of this, there are thefe particulars to be explained:

$$
\left\{\begin{array}{l}
\text { 1. it } \tau ; \text { or quod fit. } \\
2 . \operatorname{sic} \tau t\left\{\begin{array}{l}
\text { cur jit. } \\
\text { quomodo }
\end{array}\right. \text { 䜣. }
\end{array}\right.
$$

1. Firft then, for the $\sigma \pi$, or that there have been fuch lamps, it may be evident from fundry plaine and undeniable teftimonies: Saint Auftin mentions one of them in a Temple dedicated to Venus, which was always expofed to the open weather, and could never be confumed orextinguifhed. To him affents the judi-
cious

234

Deoperibus Dei,pars I. l.4.C. 2. De deperd. Tit. 35.

* Or Anti。. och. Lice-
tus de Lu-
cernis,l.I. c.7.

Dedalus; or,
 Lib. 2

ous Zanchy. Pancyrollus mentions a Lamp found in his time, in the fepulchre of Tullia, Cicero's daughter, which had continued there for about 1550 years, but was prefently extinguifhed upon the admiffion of new air. And 'tis commonly related of Cedrenus, that in fuffinians time there was another burning lamp found in an old wall at ${ }^{*}$ Edeffa, which had remained fo for above 500 years, there being a crucifixe placed by it, whence it fhould feem, that they were in ufe alfo amongft fome Chriftians.
But more efpecially remarkable, is that relation celebrated by fo many Authours, concerning olybiws his lamp, which had continued burning for 1500 years. The ftory is thus: As a ruftick was digging the ground by Padua, he found an Urne or earthen pot, in which there was another urne, and in this leffer, a lamp clearly burning; on each fide of it, there were two other Veffels, each of them full of a pure liquor, the one of gold, the other of filver. Ego Chymic artis , (f

Mechanicall Motions. CAP.Io. 235

modo vera poteff effe ars (hymia) jurare aul im elementa \& materiam onmium, (faith Maturantius, who hadthe pof(effion of thefe things after they were taken up.) On the bigger of thefe urns there was this infcription:
Plutoni facrum munus ne att ing ite fures, Ignotü ef vobis hoc quod in orbe latet, Namque elementa gravi claufit digeffa labore
Vafe fub hoc modice, Maximus Oly. bius.
Adjit fecundo cuftos ibi co iia cormu, Ne tanti pretium depereat laticis.

The leffer urn was thus infcribed:
Abite hinc peßimi fures,
Vos quid villtis, veftris cum oculis emißitios?
Abite binc, veftro cum Mercurio
Petafato Caduceatoque,
Donum hoc Maximum, Maximus Olybius
Plutoni facrum facit.
Whence wee may probably conjeEture that it was fome Chymicall fecret,

Cap.io. Mechanical Motions.

be feen in the fepulchre of Francis Roficrofe, as is more largely expreffed in the confeffion of that fraternity.

There is another relation of a certain man, who upon occafion digging fomewhat deep in the ground, did meet with fomething like a dore,having a wall on each hand of is, from which having cleared the earth, he forced open this dore, upon this there was difcovered a faire Vault, and towards the furcher fide of it, the ftatue of a man in Armour, fitting by a table, leaning upon his left arm, and holding a fcepter in his right hand, with a lamp burning before him_{3} the floor of this Vault being fo contrived, that upon the firft ftep into it, the fatue would erect it felf from its leaning pofture; upon the fecond ftep it did lift up the fcepter to ftrike, and before a man could approach near enough to take hold of the lamp, the ftatue did ftrike and break it to peeces: fuch care was there taken that it might not be foln away, or difcovered.
Our learned Cambden in his defcrip-
Pag. 57^{20} tion

Dejure manium, l. $2.6 .3^{2}$

Deperdit. Tit. 62.
tion of rorkjhire, fpeaking of the tombe of Conftantius Cblorus, broken up in thefe later years, mentions fuch a lamp to be found within it.

There are fundry other relations to this purpofe. 2uod ad lucernas attinet, ille in omnibus fere monument is inveniuntur, (faith Gutherius.) In moft of the ancient Monuments chere is fome kind of lamp, (though of the ordinary fort; But thofe perfons who were of greateft note and wifdome, did procure fuch as might laft without fupply, for fo many ages together. Pancirollus tels us that it was ufuall for the Nobles amongft the Romans, to take fpeciall care in their laft wils, that they might have a lamp in their Monuments. And to this purpofe they did ufually give liberty unto fome of their flaves on this condition, that they fhould be watchfull in maintaining and preferving it. From all which relations, the firft particular of this enquiry, concerning the beeing or exiftence of fuch lamps, may fufficiently appear.

Cap.11. Mechanical Motions.

Cap. XI.

Severall opinions concerning the nat ure and reajon of thefe perpetuall Lamps.

THere are two opinions to be anfwered, which doe utterly overthrow the chiefe confequence from there relations.

1. Some think that thefe lighis fo often difcovered in the ancient tombs, were not fire or flame, but only fome of thofe bright bodies which do ulually fhine in dark places.
2. Others grant them to be fire, but yet think them to be then firft enkindled by the admiffion of new air, when thefe fepulchres were opened.
I. There are divers bodies (faith Ariftotle) which thine in the dark, as roten wood, the fcales of fome fifhes, fones, the glow-worm, the eyes of divers creatures. Cardan tels us of a bird in new Spain, called Cocoyum, whofe whole body is very bright, but his eyes almoft equall to the light of

a candle, by which alone in a darke night, one may both write and read; By thefe the Indians ((aith he) ufe to eat their feafting Suppers.

It is commonly related and beleeved, that a Carbuncle does thine in the dark like a burning coal, from

* carlo Pyropus.
Hiftoria
Animal.l. 8

De Lapid. GuGmmis. l.2.c.8. whence it hath iss * name. To which purpofe there is a ftory in exlian, of a Stork, that by a certain woman was cured of a broken thigh, in gratitude to whom, this fowl afterwards flying by her, did let fail into her lap a bright Carbuncle, which (faith he) would in the night time fhine as clear as a lamp. Bur this and the like old relations are now generally difbeleeved and rejected by learned men: Doctißimorum omnium confensu, hujufmodi gemma non inveniuntur, (faich Boetius de Boot) a man very much skilled in, and inquifitive after fuch matters; nor is there any one of name that does from his owneye-fight or experience, affirm the reall exiftence of any gem fo qualified.

Some have thought that the light

CAP.11. Mecianical Motions.
in ancient tombs hath been occafioned

But to this opinion it might bee replyed, that none of thefe Noertiluca, or night-fhining bodies have been obferved in any of the ancient fepulchres, and therefore this is a mere imaginary conjecture; And then befides, fome of thefe lamps have been taken out burning, and continued fo for a confiderable fpace afterwards. As for the fuppofed conveniency of them, for the perpetuating of the holy fire amongft the Jews; it may as well be feared left thele fhould have occafioned their idolatry; unto which that nation was fo ftrongly addicted, upon every fleight occafion; nor may it feem ftrange, if the providence of God fhould rather permit this fire fometimes to goe out, that fo by their earneft prayers, being aR gain

Vide Li-
cet. de lucern.l. 2.

242
* Levit.g.
24.
2 Chron.
7.I.
I King. 8.

Cap.11. Mechanicall Motions.

infcriptions on them, expreffing that the lamps within them were burning, when they were firft baried. To which may be added the experience of thofe which have continued fo,for a good fpace afterwards; whereas the inflammation of tat and vifceus vapours does prefently vanifh. The lamp which was found in the Ine Nefis, did burn clearly while it was inclofed in the glaffe, but that being broken, was prefently extinguifhed. As for that Chymicall relation, it may rather ferve to prove, that fire may continue fo many ages , without confuming any fewell.

So that notwithitanding the oppofite opinions, yet 'tis more probable that there have been fuch lamps, as have remained burning, withour any new fupply, for many hundred years together ; which was the firt particular to be explained.
2. Concerning the reafon, why the Ancients were fo carefull in this particular, there are divers opinions. Some think it to be an expreffion of R 2 their

$$
244
$$

Dodalus; or,
Lib. 2.
their beleef, concerning the fouls immortality, after its departure out of the body, a lamp amongtt the Egyptians being the Hieroglyphick of life. And therefore they that could not procure fuch lamps, were yer carefull to have the image and reprefentation of them ingraved on their Tombes.

Others conceive them to be by way of gratitude to thofe infernall deities, who tooke the charge and cuftody of their dead bodies, remaining always with them in their Tombs, and were therefore called Dii manes.

Others are of opinion, that thefe lamps were onely intended to make their fepulchres more pleafant and lightfome, that they might not feem to be imprifoned in a difmall and uncomfortable place. True indeed, the dead bodie cannot be fenfible of this lighe, no more could it of its want of buriali; yet the fame inftinct which did excite it to the defire of one, did alfo occafion the other.

Licetus concludes this ancient cufome to have a double end. 1. Politick,

Cap.12. Mechanicall Motions.
litick, for the diftinction of fuch as were nobly born, in whofe monuments only they were ufed. 2. Naturall, to preferve the body and foul from darkneffe; For it was a common opinion amongit them, that the fouls alfo were much converfant about thofe places where the bodies were buried.

Cap. XII.
The moft probable conjecture how thefe lamps were framed.

THe greateft difficulty of this enquiry doth confift in this laft par-

2 nomodo fint. cicular, concerning the manner how, or by what poffible means any fuch perpetuall flame may be contrived.
For the difcovery of which, there are two things to be more efpecially confidered.

1. The fnuffe or wiek, which muft adminifter unto the flame.
2. The oyl, which muft nourifh is.

$$
R_{3} \quad \text { For }
$$

2.4	Dedalus; or, Lib.2.
	For the firf, it is generally gransed that there are divers fubitances which will retain fire without confuming: fuch is that minerall welh they call the Salamanders wool, faith our learned * Bacon. Iple expertus fum villos Salamandre non confumi, faith \dagger foachimus Fortives. And ${ }^{*}$ Wecker from his own knowledge affirms the fame of planseallum, that being formed into the likeneffe of a wiek, will adminifter to the flame, and yet not confume it felf. Of this nature likewife was that
Or Linum Carpafum. Plutarch, de Orackl.. defectu.	which the Ancients did call linum vivum, or asbeftinum: of this they were wont to make garments; that were not deftroyed, but purified by fire; and whereas the fpots or foulneffe of other cloaths are wafhed our, in thefe they were ufually burnt as way. The bodies of the ancient Kings were wrapped in fuch garments when
Plin. Hifto l.19.c.I.	they were pur in the funerall pile, that their afhes might bee therein preferved, without the mixture of any other. The materials of them were not from any hearb or vegetable.

Cap.12. Mechanical Motions.
ble, as other textils, but from a fone called Amiantus, which being bruifed by a hanmer, and its earthy nature fhaken our, retains certain hairy fubftances, which may be fpun and woven as hemp or flaxe. "Pliny fays, that for the precioufneffe of it, it did almoft equall the price of pearls. Pancirollus tels us, that it was very rare and efteemed precious in ancient times, but now is fcarce found or known in any places, and therefore he reckons it among ft the things that are loft. But L. Vives affirms, that he hath often feen wieks made of it at Paris, and the fame matter woven into a napkin at Lovaine, which was cleanfed by being burnt in the fire.
'Tis probable from thele various relations, that there was feverall forts of it, fome of a more precious, other of a bafer kinde, that was found in Cyprus, the deferts of India, and a cefrain Province of Afia: this being common in fome paris of Ita$6 y$, but is fo fhort and brittle, that it cannot be fpun into a thred. And R_{4} there-
248 Dedalus; or, Lib.2.

D lapid. et gemmis, l.2.c.204.
therefore is ulefull only for the wieks of perpetuall lamps, faith Boetius de Boot. Some of this, or very like it, I have upon inquiry lately procured and experimented. But whether it be the fone Asbeftus, or only plumeallum, I cannot certainly affirm. For it feems they are both fo very like, as to be commonly fold for one another (faith the fame Authour.) How. ever it does truly agree in this common quality alcribed unto both, of being incombuftible, and not confumable by fire : But yet there is this inconvenience, that it doth contract fo much fuliginous matter from che earthy parts of the oyl, (though it was tryed with fome of the pureft oyl, which is ordinary to be bought) that in a very few days it did choak and extinguifh the flame. There may poffibly be fome chymicall way fo to purifie and defecate this oyl, that it thall not fpend into a footy matter.

However if the liquour be of a clofe and glutinous confintency, it may burn without any Inuffe, as we fee

Cap.12. Mechanical Motions.
in Camphire, and fome other bituminous fubftances. And it is probable that moft of the ancient lamps were of this kind, becaufe the exacteft relations (to my remembrance) doe not mention any that have been found with fuch wieks.

But herein will confift the greateft difficulty, to find out what invention there might be for their duration. Concerning which there are fundry opinions.

Saint Auftin fpeaking of that lamp in one of the Heathen Temples, thinks that it might either be done by Magick, the Devill thinking thereby to promote the worfhip and efteem of that idoll to which it was dedicated, or elfe that the art of man might make it of fome fuch materiall, as the fone Asbeftus, which being once enkindled, will burn without being confumed. As others (faith he) have contrived as great a wonder in appearance, from the naturall virtue of another ftone, making an iron image feem to hang in the air, by

Deciv.Dei l. 21 c.6.

Zancb.de Operibus Dei,par. x. l.4.C.13.

250	Dedalus; or, Lib. 2
	reafon of two load-ftones, the one being placed in the feeling, the other in the floor. Others are of opinion that this may be effected in a hollow veffell, exactly luted or ftopped up in all the vents of it. And then, if a lamp be fuppofed to burn in it, but for the leaft moment of time, it muft continue fo always, or elfe there would be a Va cuй, which nature is not capable of, If you ask, how it fhall be nourifhed, it is anfwered, that the oyl of it being turned into fmoak \& vapours, will again be converted into its former nature; For otherwife, if it fhould remaine rarified in fo thin a fubftance, then there would not be room enough for that fume which mult fucceed it; and fo on the other fide, there might bee fome danger of the penetration of bodies, which nature doth as much abhor. To prevent both which, as it is in the chymicall circulations, where the fame body is oftentimes turned from liquour into vapour, and from vapour into liquour again; $\begin{aligned} & \text { fo } \\ & \text { in }\end{aligned}$

Mechanicall Motions. CAP.I2. ${ }^{251}$

in this experiment, the fame oyl fhall be turned into fume, and that fume fhall again convert into oyl. Always provided, that this oyl which nourihes the lamp, bee fuppofed of fo clofe and tenacious a fubftance, that may flowly evaporate, and fo there will be the more leilure for nature to perfeat thefe circulations. According to which contrivance, the lamp within this veffell can never fail, being always fupplyed with fufficient nowrifhment. That which was found in the Ifle Nefis, inclofed in a glaffe viall, mentioned by Baptifta Porta, is thought to be made after fome fuch manner as this.

Others conceive it poffible to extract fuch an oyl out of fome minerals, which fhall for a long fpace ferve to nourifh the flame of a lamp with very little or no expence of irs own fubftance. To which purpofe (fay they) if gold be diffolved into an un-
wolphang. Lazius, l. 3 c. 18.

Camb.Brit. p.572. Etuous humour, or if the radicall moifture of chat metall were fepara. ted, it might be contrived to burne
(perhaps

252	Dedalus; or, Lib.2.
	(perhaps for ever, orat leaft) for many ages together, without being confumed. For if gold it felf (as experience fhews) be fo untameable by the fire, that after many meltings, and violent heats, it does fcarce diminifh, ti probable then, that being diffolved into an oylie fubftance, it might for many hundred years together continue burning. There is a little chymical difcourfe, to prove that Vrim and Thummim is to be made by art; the Authour of this Treatife affirms that place, Gen. 6.16. where Godtels Noab, a window flalt thour make in the Ark, to be very unfitly rendred in our cranflation a window, becaufe the original word צignifies properly fplendor or light; and then befides, the air being at that time fo extreamely darkned with the clouds of that exceffive rain, a window could be bat of very little ufe in regard of light, unleffe there were fome other help for it; From whence he conjectures that both this fplendor, and fo likewife the Urim

CAp.Iz. Mechanical Motions.
and Thummim were artificiall, chymicall preparations of light, anfwerable to thefe fubterraneous lamps; or in his own phrafe, it was the usiver fall pirit fixed ina tranparent body.

It is the opinion of Licetus (who hath more exactly fearched into the fubtilties of this inquiry) that fire does not need any humour for the nourifhment of it, but onely to decain it from flying upwards. For being it felf one of the chief elements ((aith he out of Theophraftus) it were ablurd to think that it could nor fubfift without fomething to feed it. As for that fubftance which is confumed by it, this cannot be faid to foment or preferve the fame fire, but onely to generate new. For the berter undertanding of this, we muft oblerve, that there may be a threefold proportion betwixt fire, and the husmour or matter of it. Either the humour does exceed the ftrength of the fire, or the fire does exceed the humour; and according to both thefe, the flame doth prelently vanifh. Or elfe

De Lucer-
nir, 6.20, 21
elfe lafty, they may be both equall in their virtues, (as it is betwixt the radicall moifture and naturall heat in living creatures and then neither of them can overcome or deftroy the 0 ther.

Thofe ancient lamps of fuch long duration were of this later kind. But now, becaule the qualities of heat or cold, drineffe or moifture in the ambient air, may alter this equality of proportion betwixe them, and make one fronger then the other; therefore to prevent this, the Ancients did hide thefe lamps in fome caverns of the earth, or clofe monuments: And hence is it, that at the opening of thefe, the admiffion of new air untothelamp does ufually caufe fo great an inequality betwixt the flame and the oyle, that it is prefently extinguifhed.

But ftill the greateft difficulcy remains, how to make any fuch exact proportion betwixt an unctuous humour, and fuch an autive quality, as the heat of fire, or this equality be-

Cap.12. Mechanical Motions.

ing made, it is yet a further difficulty, how it may bee preferved. To which purpofe, Licetus thinkes it poffible to extract an inflamable oyl from the fone Asbeftus, Amiantus, or the metall gold, which being of the fame pure and homogeneous nature with thofe bodies, fhall be to proportioned unto the hear of fire, that it cannot be confumed by it, but being once inflamed fhould continue for many ages, without any fenfible diminution.
If it be in the power of Chymiftry to perform fach frrange effects, as are commonly experimented in that which they call aurum fulmixans, one frruple of which fhall give a lowder blow, $\&$ be of greater force in defcent, then half a pound of ordinary gunpowder in alcent; why may it not be as feafible by the fame art to extract fuch an oyl as is here enquired after: Since it muft needs be more difficult to make a fire which of its owne inclination fhall tend downewards, then to concrive fuch an unctuous

256	Dedalus; or,
Ctuous liquour, wherein fire fhall be maintained for many years withour any new fupply Thus have I briefly fet down the relations and opinions of divers lear- ned men concerning thefe perpetuall lamps; of which, though there have been fo many fundry kinds, and fe- verall ways to make them, (fome be- ing able to refint any violence of weathers, orhers being eafily extin- guifhed by any little alteration of the air, fome being inclofed round a- bout within glaffe, others being o- pen;) yet now they are all of them utterly perifhed amongft the other ru- ines of time; and thofe who are moft verfed in the fearch after them have onely recovered fuch dark con- jectures, from which a man cannot clearly deduce any evident principle that may encourage him to a parti- cular triall.	

> Cap.13. Mecianaical Motions.

Cap. XIII.

Concerning leverall attempts of contriving a perpetuall motion by magneticall virtues.

THe fecond way whereby the making of a perpetuall morion hath been atttempted, is by magneticall virtues; which are not without fome ftrong probabilities of proving effeAuall to this purpofe : efpecially when we confider that the heavenly revolutions, (being as the firt pattern imitated and aimed at in thele atrempts) are all of them performed by the help of there qualities. This great orb of earth, and all the other planers being bur as fo many magnericall globes endowed with fuch various and continuall motions, as may be moft agreeable to the purpofes for which they were intended. And therefore moft of the Authours, who treat concerning this invention, do agree, that the likelieft way to effect it, is by thefe kind of qualities.

> 258

Dedalus; or,
Lib. 2
It was the opinió of Pet: Peregrinus,
Gilbert de
Magnet.
cabrus
Pbilof.
Magnet.
l.4.6.20. \& there is an example pretended for it in Bettinus (Apiar.9.Progym.5 pro. 1r.) that a magneticall globe or terella, being rightly placed upon its poles, would of it felf have a conftant rotation, like the diurnall motion of the earth; Burthis is commonly exploded, as being againft all experience.

At banaf.
Kircher, de Arte Magnet.l. 1 par. 2.prop.13. Item l.2. p.4.
${ }^{2}$ Tract. de motu continио.
${ }^{\text {b }}$ De Rota perpetui moius.par.
2.C.3.
${ }^{\text {c }}$ De VGaviet. rei華 l.9.c. 4 8. De magnet.l.2.C. 35

Others think it poffible, fo to contrive feverall pieces of fteel, and al loadftone, that by their continuall attraction and expulfion of one another, they may cauie a perpetuall re-volution of a wheel; Of this opini-on were a Taifner, b Pet. Peregrinus, and cCardan, out of Antonius de Fantis. But D. Gilbert, who was more efpecially verfed in magneticall experiments, concludes it to be a vain and groundleffe fancy.

But amongtt all thefe kind of inventions, that is moft likely, wherein a loadftone is fo difpofed, that it fhall draw unto it on a reclined plane, a bullet of fteel; which fteele, as it afcends

Cap.13. Mechanicall Motions.
fcends neer to the loadfone, may be contrived to fall down through fome hole in the plane, and fo to return unto the place from whence at firft it began to move; and being there, the loadfone will again attract it upwards, till coming to this hole it will fall down again: and fo the motion fhall be perpetuall, as may be more eafily conceivable by this figure.

$S_{2} \quad$ Suppore

CAP.13. Mechanicall Motions.

to be anfwerable unto A in the fone, and to B; In the attraction $C D$, muft always be directed anfwerable to $A B$, and fo the motion will be more difficult, by reafon there can be no rotation or turning round of the bullet, but it muft flide up with the line $C D$, anfwerable to the axis $A B$.
2. In its fall from E to G, which is motus elementaris, and procceds from its gravity, there muft needs be a rocation of it, and fo 'tis ods, but it happens wrong in the rife, the poles in the bullet, being not in the lame direction to thofe in the magner; and if in this refluxe it fhould fo fall out, that D fould be directed towards B, there fhould be rather a flight then an attraction, fince thofe two ends doe repell and not draw one another.
3. If the loaditone $A B$, have fo much ftrength that it can attract the bullet in F, when it is not turned round, but does onely flide upon the plane, whereas its own gravity would roule it downwards: then it is evident,

$$
\mathrm{S}_{3} \quad \text { the }
$$

262	Dedalus; or, Lib. 2
	the fphere of its activity and ftrength would be fo increafed when ic approaches much neerer, that it would nor need the affiffance of the plane, but would draw it immediately to it felf, without that help, and fo the bullet would not fal down through the hole, but afcend to the fone, and confequently ceafe its motion. For if the loadfone be of force enough so draw the bullet on the plane, at the diffance $F B$, then muft the ftrength of it be fufficient to attract it immediately unto it felfe, when it is fo much neerer as $E B$. And if the gravity of the bullet be fuppofed fo much to exceed the ftrength of the Magnet, that it cannot draw it directly when it is fo near, then will it not be able to attract the bullet up the plane when it is fo much further off. So that none of all thefe Magneticall experiments, which have been as yet difcovered, are fufficient for the effecting of a perpetuall motion, though thefe kind of qualities feem moft conducible unto it, and perhaps

Cap.I4. Mechanical Motions.
haps hereafter it may be contrived from them.

> Cap. XIV.

The feeming probability of effecting a continuall motion by folid weights in a hollow wheel or Sphere.

THe third way whereby the making of a perperuall motion hath been attempted, is by the naturall affection of gravity; when the heavineffe of feverall bodies is fo contrived, that the fame motion which they give in their defcent, may bee able to carry them up again.

But againft the puffibility of any fuch invention, it is thus objected by Cardan; All fublunary bodies have a direct morion either of alcent or defcent, which, becaufe it does refer to fome tearm, therefore cannot be perperuall, but mult needs ceafe, when it is arrived at the place unto which it naturally tends.

I anfwer, though this may prove S 4 that

Subtil.l.17 DeVar. Rerum l.9. c. $4^{8 .}$

$$
\text { Dedalus; or, LIB. } 2
$$

that there is no naturall motion of any particular heavy body, which is perpetuall, yet it doth not hinder but that it is poffible from them to contrive fuch an artificiall revolution as thall conftantly be the caufe of it felf.

Thofe bodies which may be ferviceable to this purpore, are diftinguifhable into two kinds.
I. solid and confiftent, as weights of metall, or the like.
2. Huid or fliding, as water, fand, \&c.

Both thele ways have been attempted by many, though with very little or no fucceffe. Ochermens conjectures in this kind you may fee fet
D. Flud. Tract. 2. pars 7.l.2. 6.4.et 7 . down by divers Authours. It would be too tedious to repeat them over, or lee forth their draughes. I fhall onely mention two new ones, which (if I am not over partiall) feem altogether as probable, as any of thefe kinds that have been yet invented; and til experience had difcovered their defect and infufficiency, I did certainly

Cap.14. Mechanical Motions.
tainly conclude them to be infallible.
The firf of thefe contrivances was by folid weights being placed in fome hollow wheel or fphere, unto which they fhould give a perpetuall revolution. For (as the Philofopher hath largely proved) only a circular motion can properly be perperuall.

But for the better conceiving of this invention, it is requifite, that we rightly underftand fome principles in Trochilicks, or the art of wheelinftruments; As chiefly, the relation betwixt the parts of a wheel, and thofe of a ballance: the feverall proportions in the Semidiameter of a wheel, being anfwerable to the fides in a ballance, where the weight is multiplyed according to its diffance from the center,

265

Arif. Phys. l.8.c.12.

Arif.MEchan.c.z. Deratione libre ad circulum.

Thus

\section*{| Mechanicall Motions. CAP.I4. 267 |
| :--- | :--- | :--- |}

then C, yet this does not at all concern the heavineffe, or though the piummet C, were placed much higher then it is at E, or lower at F, yet would it ftill retain the fame weight which it had at C, becaufe thefe plummets (as is the nature of all heavy bodies) doe tend downewards by a feteight line: So that their feverall gravities are to be meafured by that part of the horizontall Semidiameter, which is directly either below or above thé. Thus when the plummer C, fhall be moved either to G or H, it will lofe ${ }_{5}^{2}$ of its former heavineffe, and bee equally ponderous as if it were placed in the ballance at the number 3 , and if we fuppofe it to be fituared at I or K, then the weight of it will lie wholly upon the Center, and nor at all conduce to the motion of the wheel on either fide. So that the freight lines which paffe through the divifions of the diameter, may ferve to meafure the heavineffe of any weight in its feverall fituations.
Thefe things throughly confidered,

268	Dedalus; or, Lib. 2.
it feems very poffible and eafie for a	
man to contrive the plummets of a	
wheel, that they may be always hea-	
vier in their fall, then intheir afcent;	
and fo confequently that they fhould	
give a perpetuall motionto the wheel	
it felf : Since it is impoffible for	
that to remain unmoved, as long as	
one fide in it is heavier then the o-	
ther.	
For the performance of this, the	
weights muft be fo ordered, I.That	
in their defcent they may fall from	
the Center, and in their afcent may	
rife neerer to it. 2. That the fall of	
each plummet may begin the moti-	
on of that which fhould fucceed it.	
As in this following Diagram.	

Cap.I4. Mechanical Motions.

Where there are 16 plummers, 8 in the inward circle, and as many in the outward, (the inequality being to arife from their fituation, it is therefore moft convenient that the number of them be even.) The eight in ward plummers are fuppofed to be in themfelves fo much heavier then the other, that in the wheel they may be of equall weight with thofe above them, and then the fall of thefe will bee of fufficient force to bring
down
270 Deddlus; or, Lib. 2.
down the other. For example, if the outward be each of them 4 ounces, then the inward muft be 5 , becaule the outward is diftant from the center 5 of thofe parts, whereof the inward is but 4. Each paire of thefe weights fhould be joyned together by a litle ftring or chain, which muft be faftned abour the middle berwixt the bullet and the center of that plummer, which is to fall firf, and at the top of the orher.
When thefe bullets in their defcent are at their fartheft diftance from the center of the wheel, then fhall they be ftopped, and reft on the pins placed to shat purpofe; and fo in their rifing, there muft be other pins to keep them in a convenient pofture and diftance from the center, left approaching too neere unto it, they thereby become unfit to fall, when they fhall come to the top of the defcending fide.
This may be otherwife contrived with fome different circumftances, but they will all redound to the fame effect.

Cap.14. Mechanical Motions.
effect. By fuch an engine it feemes very probable, that a man may produce a perpetuall motion. The diftance of the plummets from the center increafing their weight on one fide, and their being tyed to one another, caufing a contant fucceffion in their falling.

But now, upon experience I have found this to be fallacious, \& the reafon may fufficiently appear by a calculation of the heavines of each plummet, according to its feveral fituation; which may eafily be done by thofe perpendiculars that cut the diameter, (as was before explained, and is here expreffed in five of the plummets on the defcending fide.) From fuch a calculation it will be evident, that both the fides of this wheel will equiponderate, and fo confequently that the fnppofed inequality, whence the motion fhould proceed, is but imaginary and groundleffe. On the defcending fide, the heavineffe of each plummer may be meafured according to thefe numbers, (fuppofing the diamerer
272

Dedalus; or, Lib.2!
amerer of the wheel to be divided in-. to twenty parts, and each of thofe: fubdivided into four.)

The outward plummets.
$\left\{\begin{array}{ll}7 & 0 \\ 10 & 0 \\ 7 & 0\end{array}\right\} \begin{aligned} & \text { The fum } \\ & 24\end{aligned}$

The inward plummets. $\left\{\begin{array}{ll}1 & 0 \\ 7 & 2 \\ 7 & 2 \\ 3 & 0\end{array}\right\} 19$.

Onthe afcending fide the weights; are to be reckoned according to thefe: degrees.

The outward.

The inward.

The fumme of which laft numbers is equall with the former, and therefore both the fides of fuch a wheele, in this fituation will equiponderate.

Cap.14. Mecnanical Motions.
If it be objected, that the plummet A fhould bee contrived to pull down the other at B, and then the defcending fide will be heavier then the other.

For anfwer to this, it is confiderable,
I. That there bullets towards the top of the wheel, cannot defcend till they come to a certain kind of in. clination.
2. That any lower bullet hanging upon the other above it, to pull it down, muft be conceived, as if the weight of it were in that point where its fring touches the upper, at which point this bullet will be of leffe heavineffe in refpect of the wheel, then if it did reft in its own place: So that both the fides of it in any kind of fituation may equiponderate.

274	Dedalus; or, Lib.z.
	Cap. XV. of compofing a perpetuall motion by fluid weights. Concorrning Archimedes bis water-fcrew. The great probability of accomplifhing this inguiry by the belp of that, with the fallibleneß of it uponexperiment. THar which I fhall mention as the 1 laft way, for the triall of this ex periment, is by contriving it in fome water inftrument; which may feem altogether as probable and eafie as any of the reft, becaule that element by reafon of its fluid and fubtle nature (whereby of its own accord it fearches out the lower and more narrow paffages) may be moft pliable to the mind of the artificer. Now the ufuall means for the afcent of water is either by Suckers or Forces, or fomething equivalent thereunto; Neither of which may be conveniently applied unto fuch a work as this, becaufe there is required unto each of them fo much or more ftrength, as may be anfivera-

Cap.15. Mechanicall Motions.
ble to the full weight of the water that is to be drawn up; and then befides, they move for the moft part by fits and fnatches, fo that it is not eafily conceivable, how they thould conduce unto fuch a motion, which by reafon of its perpetuity mult bee regular and equall.

But amongit all other ways to this purpofe, that invention of Archimedes is incomparably the beft, which is ufually called Cochlea, or the waterforew, being framed by the helicall revolution of a cavity about a Cy linder. We have nor any difcourfe from the Authour himfelf concerning it, nor is it certain whecher he ever writ any thing to this purpofe. But if he did, yet as the injury of time hath deprived us of many other his excellent workes, folikewife of this, amongft the reft.

Atheneus feaking of that great fhip built by Hiero, in the framing of which, there were 300 Carpenters employed for a year together, befides many other hirelings for carriages, T_{2} and

Diprofoph.
b. 5.

Dedalus; or
Lib. 2.

Biblioth.
l.I.
cardan
Sibt l.x. De fapient. l. 5 .

Acchitcte.
l.10.6.11.
and fuch fervile works, mentions this inftrument as being in ftead of a pump for that valt fhip, by the help of which, one man might eafily and fpeedily drain out the water, though it were very deep.

Diodorus Siculus feeaking of this engine, tels us, that Archimedes invented it when hee was in Ægypr, and that it was ufed in that Country for the draining of thofe pits and lower grounds, whence the waters of Nilus could not return. Фinotधर $\chi^{\text {ps }}$
 fame Authour.) It being an engine fo ingenious and artificiall, as cannot be fufficiently expreffed or commended. And fo (it hould feeme) the Smith in Millain conceived it to be, who having without any teaching or information found it our, and therefore thinking himfelf to be the firf inventer, fell mad with the meer joy of it.

The nature and manner of making this, is more largely handled by Fitruvius.

The

Cap.I5. Mechanicall Mtions.
The figure of it is after this manner.

Where you fee there is a Cylinder $A A$, and a pirall cavity or pipe twining about it, according to equall revolutions $B B$. The axis and centers of its motions are at the points $C D$, upon which being turned, it will fo happen that the fame part of the pipe which was now lowermaft, will prefently become higher, fo that the water does afcend by defcending; afcending in comparifon to the whole inftrument, and defcending in refpect

$$
\mathrm{T}_{3}
$$

Cap.15. Mechanical Motions.

portion betwixt the length of the inftrument, and its elevation, as is anfwerable to the Pythagoricall Trigon. If the Hyporenufall, or Screw be 5, the perpendicular or elevation mult be 3 , and the bafis 4 .

However (with his leave) neither of thefe proportions are generally neceffary, but fhould be varied according to other circumftances. As for the breadth of the pipe in refpect of its revolutions, it is left at liberty, and may bee contrived according to the quantity of water which it fhould contain. The chief thing to be confidered is the obliquity or clofeneffe of thefe circumvolutions. For the nearer they are unto one another, the higher may the inftrument be erected; there being no other guide for its true elevation but this.

And becaufe the right undertanding of this particular is one of the principall matters that concerns the ufe of this engine, therefore I fhall endeavour with brevity and perfipicuity to explain it. The firt thing

$$
\mathrm{T}_{4} \text { tol }
$$

Dedalus; or, Lib.2.
to be inquired after is what kind of inclination thefe Helicall revolutions of the cylinder have unto the Horizon, which may be thus found our.

Let $A B$ reprefent a Cylinder with two perfect revolutions in it, unto which cylinder the perpendicular line $C D$ is equall: the bafis $D E$ being fuppored to bee double unto the compaffe or circumference of the cylinder. Now it is certain that the angle $C E D$, is the fame with that by which the revolutions on the cylinder are framed, and that the line $E C$, in comparifon to the bafis $E D$, does fhew the inclination of thefe revolutions unto the Horizon. The grounds and demonftration of this are more fully fet downe by Guidus Wbaldus, in his Mechanicks, and that other

Cap.15. Mechanical Motions.
other Treatife De Cochlea, which he writ purpofely for the explication of this inftrument, where the fubtilties of it are largely and excellently handled.

Now if this Screw which was before perpendicular, bee fuppofed to decline unto the Horizon by the angle $F B G$, as in this fecond figure;

then the inclination of the revolutions in it, will be increafed by the angle $E D H$, though thefe revolutions will fill remain in a kind of afcent, fo that water cannor bee turned through them.

But

But now, if the Screw be placed fo far declining, that the angle of its inclination $F B G$, be leffe then the angle $E C D$, in the triangle, as in this other Diagram under the former; then the revolutions of it will defcend to the Horizon, as does the line $E C$, and in fuch a pofture, if the Screw be curned round, water will afcend through its cavity. Whence it is eafie to conceive the certain declination wherein any Screw muft bee placed for its owne conveyance of water upwards. Any point betwixt H and D, being in defcent, but yet the more the Screw declines downwards towards D, by fo much the more water will be caried up by it.

If you would know the juft quantity of water which every revolution does contain and carry, according to any inclination of the cylinder, this may be eafily found by alcribing on it an Ellipfss, parallel to the Horizon; which Ellipfis will thew how much of the revolution is empty, and how much full.

Mechanicall Motions. CAP.15. 283

The true inclination of the Screw being found, together with the certain quantity of water which every helix does contain; it is further confiderable, that the water by this inftrument does afcend naturally of it felf without any violence or labour, and that the heavineffe of it does lie chiefly upon the centers or axis of the cylinder, both its fides being of equall weight (faith ν balduss) So that (it fhould feem) though we fuppofe each revolution to have an equall quantity of water, yet the Screw will remain with any part upwards (according as it fhall be fet) without turning it felf either way. And therefore the leaft ftrength being added to either of its fides, fhould make it defcend, according to that common maxime of Archimedes; any addition will make that which equiponderates with another, to tend downwards.

But now, becaufe the weight of this inftrument, and the water in it does leane wholly upon the axis, hence

Cap.15. Mechanical Motions.
wheel would not be forcible enough forthis effect, why then there might be two or three, or more, according as the length and elevation of the inftrument will admit ; By which means the weight of it may bee fo multiplied in the fall, that it thall bee equivalent to twice or thrice that quantity of water which afcends. As may be more plainly difcerned by this following Diagram.

> C
> AP.15. Mechanical Motions.

Where the figure $L M$, at the bottome does reprefent a wooden cylinder with helicall cavities cut in it, which at $A B$, is fuppofed to be covered ever with tin plates, and three water-wheels upon it $H I K$. The lower ciftern which contains the water being CD. Now this cylinder being turned round, all the water which frö the ciftern afcends through it, will fall into the veffell at E, and from that veffell being conveyed upon the water-wheel H, fhall confequently give a circular motion to the whole Screw: Or if this alone fhould bee too weak for the turning of it, then the fame water which fals from the wheel H, being received into the other veffell F, may from thence againe defcend on the wheel 1 ; by which means the force of it will be doubled. And if this be yet infufficient, then may the water which fals on the fecond wheel I, be received into the other veffell G, and from thence again defcend on the third wheel at K : and fo for as

There is another like contrivance to this purpofe in Pet:Bettin. Apiar. 4. Progym. I. Prop. 10. but with much leffe advantage then 'tis here propoled.
many other wheeles, as the inftrument is capable of. So that befides the greazer diftance of thefe three ftreams from the center or axis, by which they are made fo much heavier, \& befides, that the fal of this outward warer is forcible and violent, whereas the afcent of that within is naturall; Befides all this, there is thrice as much water to turnthe Screw, as is carried up by it.

But on the other fide, if all the water falling upon one wheel, would be able to turn it round, then half of it would ferve with two wheels; and the reft may be fo difpoled of in the fall, as to ferve unto fome other ufefull delightfull ends.

When I firft thought of this invention, I could fcarce forbear with Archimedes to cry out sugnve sugnra; It feeming fo infallible a way for the effecting of a perpetuall motion, that nothing could bee fo much as pro. bably objected againft it: But upon triall and experience I finde it altogether infufficient for any fuch

Cap.15. Mechanicall Motions.
purpofe, and that for thefe two reaCons:

1. The water that afcends will not make any confiderable ftream in the fall.
2. This ftream (though multiplied) will not bee of force enough to turn about the Screw.
3. The water afcends gently and by intermiffions, but it fals continuately and with force; each of the three veffels being fuppofed full at the firlt, that fo the weight of the water in them might adde the greater frength and fivifneffe to the Itreames that defcend from them; Now this fwiftenefe of motion will caufe fo greas a difference betwixt them, that one of thefe little ftreams may fpend more water in the fall, then a ftream fixtimes bigger in the afcent, though wee fhould fuppofe both of them to be consinuate; How mach more then, when as the afcending water is vented by fits and intermiffions, every circumvolution voiding onely fo much as is conV tained

290	Dedalus; or, Lib.2.
	tained in one Helix? And inthis particular, one that is not verfed in thefe kind of experiments, may bee eafily deceived. But fecondly, though there were fo great a difproportion, yet notwithitanding the force of thefe outward ftreams, might well enough ferve for the turning of the Screw, if it were fo that both its fides would equiponderate the water being in them (as Vbaldus hath affirmed.) But now upon farther examination, we fhall find this affertion of his, to be utterly againft both reafon and experience. And herein does confift the chief mirtake of this contrivance. For the afcending fide of the Screw is made by the water contained in it fo much heavier then the defcending fide, that thefe outward ftreams thus applied, will not be of force enough to make them equiponderate, much leffe to move the whole. As may be more eafily difcerned by this figure. Where

Caf.15. Mechanicall Motions.	291

A.

Where $A B$, reprefents a Screw covered over, $C D E$, one Helix or revolution of it, $C D$, the afcending fide, $E D$ the defcending fide, the point D the middle. The Horizontall line $C F$, fhewing how much of the Helix is fllled with water, viz. of the afcending fide, from c the beginning of the Helix to D the middle of it; and on the defcending fide, from D the middle, to the point G, where the Horizontall does cut the Helix. Now it is evident that this later part $D C$, is nothing neare fo much, and confequently not fo heavy as the other $D C$. And thus is it in all the orher revolutions, which as they are either more or larger, fo

$$
V_{2} \text { will }
$$

292	Dedalus; or, Lir.z..
	will the difficulty of this motion bee: increafed. Whence it will appeare, that the ourmard ftreams which defcend, muft be of fo much force as to countervail all that weight whereby the afcending fide in every one: of thele revolutions does exceed the other; And though this may be effected by making the water-wheels; larger, yet then the motion will be: fo flow, that the Screw will not be: able to fupply the outward ftreams. There is another contrivance to this purpofe mentioned by Kircher de Magnete, l.2.p.4. depending upon: the heat of the fun, and the force of winds, but it is liable to fuch abundance of exceptions, that it is fcarce: worth the mentioning, and does by no means deferve the confidence of any' ingenuous artift. Thus bave I briefly explained the probabilities and defects of thofe fubtle contrivances, whereby the making of a perpetuall motion hath been artempred. I would be loath to difcourage the enquiry of any ingenuous

\section*{| Mechanicall Motions. CAP. 15. 293 |
| :--- | :--- | :--- | :--- |}

artificer, by denying the poffibility of effecting it with any of thefe Mechanicall helps; But yet (I conceive) if thofe principles which concern the

Treated of befure, l.1.c.
flowneffe of the power in comparifon to the greatneffe of the weight, were rightly underfood, and throughly confidered, they would make thisexperiment to leem (if not altogether impoffible, yet) much more difficult then otherwife perhaps it will appear. However, the inquiring after it, cannot but delerve our endeavours, as being one of the moft noble amongft al thefe Mechanicall fubtilties. And(as it is in the fable of him who dugge the Vineyard, for a hid treafure, though he did not finde the money, yet hee thereby made the ground more fruitfull, fo) though we doe not attaine to the effecting of this particular, yet our fearching after it may difcover fo many other excellent fubtilties, as thall abundantly recompenfe the labour of our enquiry.

And then befides, it may beanother encouragement to confider the V 3 pleafure

294	Dedalus; or, Lib. 2
оияй̃o. Plutarich. Marcel. Ioan.TYet 2.Hit. 3 Maxim, l. ${ }_{8.5} .7$.	pleafure of fuch fpeculations, which doe ravifh and fublime the thoughts with more cleare angelicall contentments. Archimedes was generally fo caken up in the delight of thefe Mathematicall ftudies of this familiar Siren, (as Plutarch ftyles them) that he forgor both his mear and drink, and other neceffities of nature ; nay, that he neglected the faving of his life, when that rude foldier in the pride and haft of victory, would not give him leifure to finifh his demonftration. What a ravihment was that, when having found out the way to meafure Hiero's Crown, he leaped out of the Bath, and (as if he were fuddenly poffert) ran naked up and down crying Eusnne evenna! It is ftoried of Thales that in his joy and gratitude for one of thefe Mathematicall inventions, he went prefently to the Temple, and there offered up a folemn facrifice. And Pythagoras upon the like occafion is related to have facrificed a hundred oxen. The juftice of providence ha- ving

Cap.15. Mechanical Motions.
ving fo contrived it, that the pleafure which there is in the fucceffe of fuch inventions, fhould be proportioned to the great difficulty and labour of their inquiry.

FINIS.

